What's On The Horizon?

Richard A. McLaughlin, Ph.D. Professor and Extension Specialist

NC STATE UNIVERSITY

DEPARTMENT of SOIL SCIENCE

Excelsior Blanket Plus Granular vs. Dissolved PAM

Runoff Results: Solids (TSS)

Erosion Conclusions

- Adding PAM to the blanket substantially reduced erosion and turbidity
- Both granular and dissolved PAM worked well, with some advantage to the dissolved
- Less PAM is lost in runoff when it is applied dissolved
- PAM in runoff remains well below aquatic toxicity levels, even in first flush

DEPARTMENT of SOIL SCIENCE

Weather Factors in Grass Establishment

- Average rainfall per day
- Max intensity 1st event (negative)
- Amount of 1st event (negative)
- Max intensity of 2nd event (negative)
- Time between seeding and rain (negative)

Babcock and McLaughlin, 2011. J. Soil Water Cons. 66(2):132-141. Babcock and McLaughlin. 2013. J. Soil Water Cons. 68(3):221-227

NC STATE UNIVERSITY

Might be worth watering during dry spells...

NC STATE UNIVERSITY

DEPARTMENT of SOIL SCIENCE

Careful About Plastic Netting!

NC STATE UNIVERSITY

Tillage for Infiltration

NC STATE UNIVERSITY

DJI PHANTOM 2 VISION

UAV Quadcopter

- 13.8 in. length / 2.6 lb. weight
- 25 min. / 984 ft. flight range
- 34 mph max. flight speed
- Sensor
 - 14 MP photographs / 1080/30P video
 - 0-60 deg. gimbal tilt
- Operation
 - First person real-time view
 - GPS flight control enabled
 - Autonomous flight plan application

DEPARTMENT of SOIL SCIENCE

US HWY 27 / SRI WIDENING RANDOLPH COUNTY, GA

PHOTOGRAMMETRY

- Obtaining reliable measurements from overlapping photographs
- Scaled three-dimensional reconstruction through triangulation
- Common applications
 - Large-scale topographic surveys, land-use maps, forestry covers
- Image resolution
 - Airplane / satellite: 7.9 to 19.7 in./pixel
 - Low altitude UAV: 0.40 in./pixel

PHOTOGRAMMETRIC DEM GENERATION

VOLUME ESTIMATION

STOCKPILES

- Haul & transport estimation
- Efficient material storage / handling

NC STATE UNIVERSITY

SEDIMENT BASINS

- Available storage volume
- Identification of dredging / maintenance needs

DEPARTMENT of SOIL SCIENCE

3.7 million points from 30 images

NC STATE UNIVERSITY

CONSTRUCTION DOCUMENTATION

- Construction industry is burdened with legal disputes
- Assessment of pre-development conditions
- Identification of natural resources
- Project progression
- Evaluation of progress
- Contractor claims / disputes
- Material management
- Pavement sub-base thickness
- Stock-pile volumes
- Project communication
- Public meetings
- Design engineers / contractors

NC STATE UNIVERSITY

DEPARTMENT of SOIL SCIENCE

Alabama DOT Constructed Wetland

12/14/2015

National - Federal Aviation Administration

- In 2012, Congress mandated the FAA to determine how to integrate UAS into commercial airspace by September 2015.
 - Integration will be incremental
 - proposed rule for small UAS (< 55lbs)
 - Certificate of Authorization (COA)
 - permits public agencies and organizations to operate a particular UA, for a particular purpose, in a particular area.
 - Airworthiness Certificate

DEPARTMENT of SOIL SCIENCE

The State of the State: North Carolina UAS Legislation

NC STATE UNIVERSITY

North Carolina NextGen Air Transportation (NGAT) Center

- Primary Responsibility: coordinate all Unmanned Aircraft Systems (UAS) activities in the state
 - Institute for Transportation Research and Education at North Carolina State University (non-profit, university-research center)
 - Chartered by NCDOT Aviation (2012-relaunch)
 - Provides structure, process, and coordination for all UAS activities in North Carolina

university research, public safety, emergency management, and product

NC STATE UNIVERSITY

The State of the State: North Carolina UAS Governance Board

- Special 13 member Panel (first in country)
 - Regulate and Govern UAS in North Carolina
 - Create standards and policies for their use and operations
 - Approve or deny drone use requests (COA's)
 - Certification, registration, and licensing

• \$1.6 million initial investment (2014-2015 fiscal year)

- \$215,000 executive director and data analysis
- \$130,000 for data storage and management
- \$435,000 a year to operate and maintain UAS
- \$850,000 in initial set-up costs

NC STATE UNIVERSITY

Small UAS Notice of Proposed Rulemaking (NPRM)

- Framework of regulations that would allow routine use of certain small unmanned aircraft systems (UAS) in today's aviation system.
 - Finalized by June 2016

Operational Limitations

Weight less than 55 lbs. (25 kg) FAA airworthiness certification not required Visual line-of-sight (VLOS) only Aircraft markings required Daylight-only operations Maximum airspeed of 100 mph Maximum altitude of 500 feet AGL Operations in Class G airspace are allowed without ATC permission May not operate over any persons not directly involved in the operation Proposes a microUAS option

Aircraft Requirements

Operator Certification

Operators would be required to pass an initial aeronautical knowledge test Operators vetted by the Transportation Security Administration Obtain an unmanned aircraft operator certificate with a smallUAS rating Pass aeronautical knowledge test every 24 months Be at least 17 years old. Report an accident to the FAA within 10 days

NC STATE UNIVERSITY

DEPARTMENT of SOIL SCIENCE

The 333 Exemption • By law, any aircraft operation in the national airspace requires A certificated and registered aircraft - A licensed pilot (sport pilots license or better) - Operational approval (COA) • Section 333 of the FAA Modernization and Reform Act of 2012 (FMRA) - determine whether an airworthiness certificate is required for a UAS to operate safely - case-by-case authorization for certain commercial operations before Small UAS Rule - provides operators a legal, competitive advantage in the UAS marketplace Certificate of Authorization (COA) - permits public agencies and organizations to operate a particular UA, for a particular purpose, in a particular area.

NC STATE UNIVERSITY

Recreational Use

- < 4.4 pounds
- Operations below 400 feet
- Line-of Sight
- during daylight conditions
- Inside uncontrolled airspace (Class G)
- > 5 miles from airport or aviation activities
- Away from gatherings stadiums, concerts, etc.

Spray-On Ditch Liner?

Next, Optimizing Basin

- Standard Basin: 2:1 length:width, sized to NC standards
 - 325 sq ft/1 cu ft sec; 1,800 cu ft/acre
- Standard + sloped outlet
- "Sideways" : 1:2 length:width
- All with porous baffles, surface outlet

NC STATE UNIVERSITY

Flow in a Porous Baffle

Basin Designs

Normal 2:1 Basin

2:1 With "Ramp"

DEPARTMENT of SOIL SCIENCE

Settling With Ramp

"Sideways" 1:2 Basin

NC STATE UNIVERSITY

DEPARTMENT of SOIL SCIENCE

Basin Configuration Effects No Flocculation

		Turbidity (NTU)		TSS (mg L ⁻¹)		
PAM	Basin	Ditch exit	Basin exit	Ditch exit	Basin exit	
None	Horizontal	268 ± 25 a	197 ± 27 a	995 ± 79 a	125 ± 3 b	
None	Ramp	262 ± 24 a	162 ± 19 a	1,121 ± 122 a	195 ± 14 a	
None	Standard	271 ± 21 a	234 ± 22 a	1,258 ± 107 a	239 ± 30 a	
STATE UNIVERSITY DEPARTMENT of SOIL SCIENCE						

Basin Configuration Effects With Flocculation

		Turbidity (NTU)			
PAM	Basin	Ditch exit	Basin exit		
None	Horizontal	268 ± 25 a	197 ± 27 a		
None	Ramp	262 ± 24 a	162 ± 19 a		
None	Standard	271 ± 21 a	234 ± 22 a		
PAM	Horizontal	96 ± 20 b	30 ± 5 b		
PAM	Ramp	98 ± 14 b	23 ± 4 b		
РАМ	Standard	78 ± 18 b	34 ± 5 b		
C STATE UNIVERSITY					

Basin Size: Flocculation Effect

Based on Equation: Area = 1.2 Q/V, where Q = flow, V = settling velocity

Parameter	Unflocculated sediment	Flocculated sediment
Settling velocity (m s ⁻¹)	0.0017	0.004
Particle diameter (D ₅₆ , µm) ^[a]	46	74
Surface area requirement (m ² per m ³ s ⁻¹)	700	300
Required basin surface area (m ²)	40	17

Kang, J., S. E. King, and R. A. McLaughlin. 2015. Journal of Environmental Management 166: 450-456. doi:10.1016/j.jenvman.2015.10.049.

NC STATE UNIVERSITY

Basin Design Conclusions

- For unflocculated sediment, the sideways basin configuration (w/ baffles & surface outlet) had a slight advantage.
- For flocculated sediment, configuration made no difference.
- To achieve high sediment retention, flocculated sediment requires much smaller basins. (how to guarantee it is flocculated?)

DEPARTMENT of SOIL SCIENCE

Upcoming Training Opps

- IECA Environmental Connection San Antonio Feb. 13-19.
- Southeast Chapter IECA EPA MS4 Conference, Nashville May 16-18
- All through 2016: <u>www.soil.ncsu.edu</u> (NCDOT certification, turbidity, general workshops)

NC STATE UNIVERSITY

