

Hydrologic Components

- Watershed Characteristics Drainage Area, Land Use, Types of Soil, and Time of Concentration.
- Storm Characteristics Type, Duration, Total Volume, Intensity, and Distribution.

SELECTING THE RIGHT METHOD!

- •Acceptable methods to calculate peak discharge.
 - 1. Rational Method
 - 2. NRCS,TR-55 Graphical Peak Flow Method(also known as the SCS Method)

•Which method do I use?

- 1. Rational Method: drainage area is less than 50 acres
- 2. SCS Method: drainage area is greater than 20 acres, also the SCS method should only be used when the Curve Number exceeds 50 and the time of concentration is greater than 0.1 hr and less than 10 hr.

USING THE NRCS METHOD

- Step 1. Determine the drainage area.
- Step 2. Determine a weighted Curve Number and Tc
- Step 3. Select appropriate Rainfall amounts. (Depth, not intensity)
- Step 4. Determine peak discharge.

Example #1

- Using the SCS Method, determine the total amount of runoff volume produced from a 10 year storm event that is located in Boone, NC. Two-thirds of the site is to be cleared and graded, while one-third will be left alone as dense woods.
- Drainage area of 45 acres
- Assume all soils are Hydrologic Group B
- The time of concentration:
 - Sheet flow of 50' with a slope of 8% made of Dense Woods.
 - Shallow concentrated flow of 250' with a slope of 6.5% unpaved.
 - Channel flow of 450' with a slope of 3.5% using a <u>bankfull flow</u> area of 4.5 ft² and a wetted perimeter of 5.0'. (Use n = 0.055)
- <u>http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm</u>

Four Hydrologic Soil Groups as Defined by the SCS (1986)

Group A - A soils have low runoff potential and high infiltration rates and have a high rate of water transmission (greater than 0.30 in/hr). The textures of these soils are typically sand, loamy sand, or sandy loam.

Group B - B soils have moderate infiltration rates and have a moderate rate of water transmission (0.15-0.30 in/hr). The textures of these soils are typically silt loam or loam.

Group C - C soils have low infiltration rates and have a low rate of water transmission (0.05-0.15 in/hr). The texture of these soils is typically sandy clay loam.

Group D - D soils have high runoff potential and have a very low rate of water transmission (0-0.05 in/hr). The textures of these soils are typically clay loam, silty clay loam, sandy clay, silty clay, or clay.

NRCS SOIL WEB SURVEY

	RUSLE2	Related A	ttributes–Iredell Cou	nty, North	Carolina			
Map symbol and soil name	Pct. of	Slope	Hydrologic group	Kf	T factor	Repre	esentative	value
	map unit	length (ft)				% Sand	% Silt	% Clay
ToC2—Tomlin sandy clay loam, 6 to 10 percent slopes, moderately eroded								
Tomlin, moderately eroded	90	230	В	.10	5	55.1	14.9	30.0
ToD2—Tomlin sandy clay loam, 10 to 15 percent slopes, moderately eroded								
Tomlin, moderately eroded	80	_	в	.10	5	55.1	14.9	30.0
ToE2—Tomlin sandy clay loam, 15 to 25 percent slopes, moderately eroded								
Tomlin, moderately eroded	80	_	в	.10	5	55.1	14.9	30.0

Data Source Information

Soil Survey Area: Iredell County, North Carolina Survey Area Data: Version 18, Jul 6, 2012

Cover Description		C hyo	urve nun drologic s	nber for soil group)
Cover type and hydrologic condition	Average percent mpervious area ²	А	В	С	D
Fully developed urban areas (vegetation established)					
Open space (lawns, parks, golf courses, cemeteries, etc	c.) ³ :				
Poor condition (grass cover < 50%)		68	79	86	89
Fair condition (grass cover 50% to 75%)		49	69	79	84
Good condition (grass cover > 75%)		39	61	74	80
Impervious areas:					
Paved parking lots, roofs, driveways, etc. (excluding right-of-way)		98	98	98	98
Streets and roads:					
Paved; curbs and storm sewers (excluding right-of-way)		98	98	98	98
Paved; open ditches (including right-of-way)		83	89	92	93
Gravel (including right-of-way)		76	85	89	91
Dirt (including right-of-way)		72	82	87	89
Urban districts:					
Commercial and business		89	92	94	95
Industrial		81	88	91	93
Residential districts by average lot size:					
1/8 acre or less (town houses)	65	77	85	90	92
1/4 acre		61	75	83	87
1/3 acre		57	72	81	86
1/2 acre		54	70	80	85
1 acre	20	51	68	79	84
2 acres	12	46	65	77	82
Developing urban areas			\sim		
Newly graded areas (pervious areas only, no vegetation) ⁴		77	86	91	94
Idle lands (CN's are determined using cover types similar to those in table 2-2c).					

5	anor agricantaro na				
Cover description			Curve nu	mbers for	
	Hydrologic		- ilyulologic	son group	-
Cover type	conditions	A	В	С	D
Pasture, grassland, or range— continuous forage for grazing. ²	Poor	68	79	86	89
	Fair	49	69	79	84
	Good	39	61	74	80
Meadow—continuous grass, protected from grazing and generally mowed for hay.	_	30	58	71	78
Brush—brush-weed-grass mixture with brush the major element. ³	Poor	48	67	77	83
	Fair	35	56	70	77
	Good	30 4	48	65	73
Woods—grass combination (orchard or tree farm). ⁵	Poor	57	73	82	86
	Fair	43	65	76	82
	Good	32	58	72	79
Woods. 6	Poor	45	66	77	83
	Fair	36	60	73	79
	Good	30 4	(55)	70	77
Farmsteads-buildings lanes	_	59	74	82	86

LAND USE

- Total Drainage area = 45 acres
 - (2/3) * 45 = 30 acres cleared
 - (1/3) * 45 = 15 acres dense woods
- CN Values (These values can be found in the Manual, Chapter 8.)
- CN = 86 for Newly Graded Areas
- CN = 55 for Dense Woods
- Weighted CN-Value
- CN*A = (86)*(30 ac) + (55)*(15 ac) = 3405 (Divide by total Acreage)
- Weighted CN-Value = $\sum CN*A/A_T >>> 3405/45 = 75.67$

MBPOLING	Spring Worksho NRCS Method Wake County, North (op Carolina	ı		
	Sub-Area Land Use and Curve	e Number	Details		
Sub-Area Identifie	r Land Use		Hydrologic Soil Group	Sub-Area Area (ac)	Curve Numbei
Basin #1	Newly graded area (pervious only) Woods	(good)	B B	30 15	86 55
	Total Area / Weighted Curve Number			45 ==	76 ==
			64 L .		

Ţ	1 1 1 1 1 1	Ľ	TR-5	55) N	1 INF	31 I V	JIN	
C Time of Concentra	ation Details		_						
Sub-area Name Watershed	<u>R</u> enam	e Cl	2-Year Rainfall (in) 4.39	т	ime	of Con	centra	tion D	etails
Flow Type	Length (ft)	Slope (ft/ft)	Surface (Manning's n)		n	Area (ft*)	WP (ft)	Velocity (f/s)	Time (hr)
Sheet	50	0.0800	Woods, Dense (0.80)	-					0.176
Shallow Concentrated	250	0.0650	Unpaved	-					0.017
Shallow Concentrated				-					
Channel	450	0.0350			0.055	4.50	5.00	4.808	0.026
Channel									
Total	750							0.9513	0.219
						?	Help	Lancel	Accept
ile: C:\Documents and Se	ttings\mpoling\D	esktop\Pr	esentation.w55				10	/15/2010	11:01 AM
			~ 13.14	Μ	inute	s			
			.0.11			-			

Boone, ARI*	North C	10 min	36.216	7 <u>N, 81.6</u> 30 min	667W	120 min	3 hr.	6 hr	12 hr	24 hr
(years)	v mm.	1 v 11111.		•• 11111.	vv		v	v III.		∠ -7 101.
2	0.48	0.76	0.96	1.32	1.66	2.00	2.18	2.85	3.77	4.39
10	0.62	1.00	1.26	1.83	2.39	2.92	3.18	4.10	5.28	6.61
25	0.72	1.14	1.45	2.14	2.85	3.55	3.87	4.94	6.21	8.07
100	0.86	1.38	1.74	2.66	3.67	4.69	5.15	6.47	7.82	10.65

- (P+0.8S)
- Q = Depth of Runoff (in) over the entire watershed.
- P = Rainfall (Depth in inches of a 24 hour event)
- S = Potential maximum retention after run off begins (in)

•
$$S = \frac{1000}{CN} - 10; S = 3.22$$

• $Q = (6.61 - (0.2*3.22))^2$; Q = 3.88 Inches of Runoff (6.61 + (0.8*3.22))

				Dur	off dan	th for ci		mbor of					
Rainfall	40	45	50	55	60	65	70	75	80	85	90	95	98
rtaintai		45					-inches				50		
1.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.08	0.17	0.32	0.56	0.79
1.2	0.00	0.00	0.00	0.00	0.00	0.00	.03	.07	.15	.27	.46	.74	.99
1.4	0.00	0.00	0.00	0.00	0.00	.02	.06	.13	.24	.39	.61	.92	1.18
1.6	0.00	0.00	0.00	0.00	.01	.05	.11	.20	.34	.52	.76	1.11	1.38
1.8	0.00	0.00	0.00	0.00	.03	.09	.17	.29	.44	.65	.93	1.29	1.58
2.0	0.00	0.00	0.00	.02	.06	.14	.24	.38	.56	.80	1.09	1.48	1.77
2.5	0.00	0.00	.02	.08	.17	.30	.46	.65	.89	1.18	1.53	1.96	2.27
3.0	0.00	.02	.09	.19	.33	.51	.71	.96	1.25	1.59	1.98	2.45	2.77
3.5	.02	.08	.20	.35	.53	.75	1.01	1.30	1.64	2.02	2.45	2.94	3.27
4.0	.06	.18	.33	.53	.76	1.03	1.33	1.67	2.04	2.46	2.92	3.43	3.77
4.5	.14	.30	.50	.74	1.02	1.33	1.67	2.05	2.46	2.91	3.40	3.92	4.26
5.0	.24	.44	.69	.98	1.30	1.65	2.04	2.45	2.89	3.37	3.88	4.42	4.76
6.0	.50	.80	1.14	1.52	1.92	2.35	2.81	3.28	3.78	4.30	4.85	5.41	5.76
7.0	.84	1.24	1.68	2.12	2.60	3.10	3.62	4.15	4.69	5.25	5.82	6.41	6.76
8.0	1.25	1.74	2.25	2.78	3.33	3.89	4.46	5.04	5.63	6.21	6.81	7.40	7.76
9.0	1.71	2.29	2.88	3.49	4.10	4.72	5.33	5.95	6.57	7.18	7.79	8.40	8.76
10.0	2.23	2.89	3.56	4.23	4.90	5.56	6.22	6.88	7.52	8.16	8.78	9.40	9.76
11.0	2.78	3.52	4.26	5.00	5.72	6.43	7.13	7.81	8.48	9.13	9.77	10.39	10.76
12.0	3.38	4.19	5.00	5.79	6.56	7.32	8.05	8.76	9.45	10.11	10.76	11.39	11.76
13.0	4.00	4.89	5.76	6.61	7.42	8.21	8.98	9.71	10.42	11.10	11.76	12.39	12.76
14.0	4.65	5.62	6.55	7.44	8.30	9.12	9.91	10.67	11.39	12.08	12.75	13.39	13.76
15.0	5.33	6.36	7.35	8.29	9.19	10.04	10.85	11.63	12.37	13.07	13.74	14.39	14.76

SCS Peak Discharge Method Peak Discharge (Q_p) = q_u * A_m * F_p * Q = CFS Unit Peak Discharge (q_u) From figure 8.03k in the sediment manual (CFS / Square Mile per Inch of Rainfall) Drainage Area (A_m) = mi² Pond and Swamp Factor (F_p) = 1.0 ~ 0% Runoff (Q) = Depth in inches

isel.	MBPOLIN	٩G	State	North Caroli	na		-
^p roject:	Spring W	'orkshop	Coun	ty: Wake			•
Subtitle:	NRC5 Me	ethod			Exec	cution Date: 2	/25/2014
Sub-area Sub-ar	Entry and S ea Name	Summary Sub-area Descr	iption S	ub-area Flows to Reach/Outlet	Area (ac)	Weighted CN	Tc (hr)
Basin #	1		Ou	tlet 💌	45.00	76	0.219

MBPOLING		Spring Workshop NRCS Method Wake County, North Carolina
		Hydrograph Peak/Peak Time Table
Sub-Area or Reach Identifier	Peak 10-Yr (cfs) (hr)	Flow and Peak Time (hr) by Rainfall Return Period
SUBAREAS Basin #1	227.48 12.03	
REACHES		
OUTLET	227.48	

Provide the structure of the st

EXAMPLE #2

- Using the Rational Method in conjunction with the SCS Triangular Unit Hydrograph Method, determine the total amount of runoff volume produced from a 10 year storm event. Two-thirds of the site is to be cleared and graded, while onethird will be left alone as dense woods.
- Drainage area of 45 acres
- Weighted Runoff Coefficient
- The time of concentration:
 - Sheet flow of 50' with a slope of 8% made of Dense Woods.
 - Shallow concentrated flow of 250' with a slope of 6.5% unpaved.
 - Channel flow of 450' with a slope of 3.5% using a <u>bankfull flow</u> area of 4.5 ft² and a wetted perimeter of 5.0'. (Use n = 0.055)

RATIONAL METHOD

- Step 1. Determine the Land Use "C"Values.
- Step 2. Determine your time of concentration, time to peak, and time of base.
- Step 3. Select Appropriate Storm

	0				
	0				
	Table 8.03b	Land Use	С	Land Use	С
Value	of Runoff Coefficient	Business:		Lawns:	
(0)		Downtown areas	0.70-0.95	Sandy soil, flat, 2%	0.05-0.10
		Neighborhood areas	0.50-0.70	Sandy soil, ave., 2,7%	0.10-0.15
		Residential:		Sandy soil, steep,	0.15-0.20
		Single-family areas	0.30-0.50	7%	
		Multi units, detached	0.40-0.60	Heavy soil, flat, 2%	0.13-0.17
		Suburban	0.25-0.40	Heavy soil, ave., 2-7%	0.18-0.22
		Industrial:		Heavy soil, steep,	0.25-0.35
		Light areas	0.50-0.80	7%	0.25-0.55
		Heavy areas	0.60-0.90	Agricultural land:	
		Parks, cemeteries	0.10-0.25	Bare packed soil	
			0.00.0.05	Smooth C	0.30-0.60
		Playgrounds	0.20-0.35	Cultivated rows	0.20-0.50
		Railroad yard areas	0.20-0.40	Heavy soil no crop	0.30-0.60
		Unimproved areas	0.10-0.30	rop	0 20-0 50
		Characteria (Sandy soil no crop	0.20-0.40
		Asphalt	0 70-0 95	Sandy soil with	
		Concrete	0.80-0.95	crop	0.10-0.25
		Brick	0.70-0.85	Pasture Hoavy coil	0 15 0 45
		Drives and walks	0.75.0.95	Sandy soil	0.05-0.25
		Drives and Walks	0.75-0.05	Woodlands	0.05-0.25
		Roofs	0.75-0.85		
		NOTE: The designer n value within the range areas with permeable s have lowest C values. S slopes, and sparse vege	nust use jud for the appro soils, flat slo Smaller area etation shoul	gement to select the ap opriate land use. Gene ypes, and dense vegeta s with slowly permeable d be assigned highest C	propriate C rally, larger tion should soils, steep values.

• Jarrett (2005) determined that the time of concentration, t_c, is approximated as 5 minutes for watersheds smaller than the Jarrett Maximum Area.

• A_{jarrett} = Jarrett Maximum Area (ac) • A_{jarrett} = 460 * (S)

 $\bullet \mathbf{S} = \mathbf{H} / \mathbf{L}$

- •S = Average Slope Length (ft)
- •H = Change in Elevation (ft)
- •L = Flow Length (ft)

		N	UN	TAT 1	$\mathcal{D}\mathcal{O}$	1/1/11		T 1		
By se produ	tting th Icing a	e storn storm (n durati event w	ion equ vith the	ual to th maxin	ne time o num pea	of cond k disc	centrati harge.	ion, yo	u are
Q: WI	ny did y entratio	you set n?	the sto	orm du	ration (greater t	han th	e time	of	
A: Yo	u want	to mak	e sure	that al	I of the	drainag	e area	is cor	ıtributir	ıg.
A: Yo	u want Tc =	to mak : 15.5 n	e sure	that al	l of the	drainag	e area	is cor	ıtributir	ng.
A: Yo	u want Tc = <u>North C</u> 5 min.	to mak 15.5 n <u>2arolina</u>	e sure nin. <u>36.216</u> 15 min.	that al	I of the	drainag	e area	is con	tributir	ng.
A: Yo Boone, ARI* (years)	u want Tc = <u>North C</u> 5 min.	to mak : 15.5 n <u>2arolina</u> 10 min.	e sure nin. <u>36.2167</u> 15 min.	that al 7 <u>N, 81.6</u> 30 min.	l of the 6667W 60 min.	drainag 120 min.	e area	is con 6 hr.	tributir 12 hr.	1g. 24 h
A: You Boone, ARI* (years) 2	u want Tc = <u>North C</u> 5 min. 5.71	to mak 15.5 n 2arolina 10 min. 4.57	e sure nin. <u>36.2167</u> 15 min. 3.83	that al 7 <u>N, 81.6</u> 30 min. 2.64	I of the 6667W 60 min. 1.66	drainag 120 min. 1.00	e area 3 hr. 0.72	6 hr. 0.48	12 hr. 0.31	ng. 24 h 0.18
A: You Boone, ARI* (years) 2 10	u want Tc = <u>North C</u> 5 min. 5.71 7.50	to mak 15.5 n :arolina 10 min. 4.57 6.00	e sure nin. <u>36.216</u> 15 min. <u>3.83</u> (5.06)	that al 7 <u>N, 81.6</u> 30 min. 2.64 3.67	6667W 60 min. 1.66 2.39	drainag 120 min. 1.00 1.46	e area 3 hr. 0.72 1.06	6 hr. 0.48 0.69	12 hr. 0.31 0.44	ng. 24 h 0.18 0.28
A: You Boone. ARI* (years) 2 10 25	u want Tc = <u>North C</u> 5 min. 5.71 7.50 8.59	to mak 15.5 n arolina 10 min. 4.57 6.00 6.85	e sure nin. <u>36.2167</u> 15 min. <u>3.83</u> 5.06 5.78	that al 7N. 81.6 30 min. 2.64 3.67 4.28	l of the 6667W 60 min. 1.66 2.39 2.85	drainag 120 min. 1.00 1.46 1.77	e area 3 hr. 0.72 1.06 1.29	6 hr. 0.48 0.69 0.83	12 hr. 0.31 0.44 0.52	24 h 0.18 0.28 0.34

SCS TRIANGULAR HYDROGRAPH METHOD

- Step 1. Solve for Peak Flow and time to peak
- Step 2. Apply values to the SCS Triangular unit Hydrograph
- Step 3. Find the area of the triangle! (.5 * Base * Heights)

RUNOFF VOLUME

• Solving for the area under the triangles!

(0.5*106*16.8*60) + (0.5*106*28*60)

53,424+89,040 = 142,464 Cubic Feet of Runoff! Also, Volume = 3.3 Acre-Feet

WHY IS THE VOLUME SO DIFFERENT? •Volume 24 hr event = 14.4 Acre-Feet •Volume 15 min. event = 3.3 Acre-Feet •Peak Flow 24 hr event = 204•Peak Flow 15 min. event = 106From a depth perspective! Boone, North Carolina 36.2167N, 81.6667W ARI* 5 min. 10 min. 15 min. 30 min. 60 min. 120 min. 3 hr. 6 hr. 12 hr. 24 hr. (years) 2 0.48 0.76 0.96 1.32 1.66 2.00 2.18 2.85 3.77 4.39 10 0.62 1.00 (1.26) 1.83 2.39 2.92 3.18 4.10 5.28 6.61 25 0.72 1.14 1.45 2.14 2.85 3.55 3.87 4.94 6.21 8.07 100 0.86 1.38 1.74 2.66 3.67 4.69 5.15 6.47 7.82 10.65

Why Runoff Volume?

• Sediment traps and basins are using total runoff volume and peak discharge rate.

- Designing with Peak discharge does not account for increased amounts of volume. This leads to traps and basins being over topped!
- Is a type II storm distribution unreasonable for sediment trap and basin design?