

PAM and Erosion: Published Results

- PAM usually reduced erosion, but there appeared to be a minimum application rate for reliable results.
- PAM also usually reduced runoff volume, but there is some evidence that surface sealing can occur.
 - Depends on rate, concentration, and soil

NC STATE UNIVERSITY

DEPARTMENT of SOIL SCIENCE

Mulch Effects

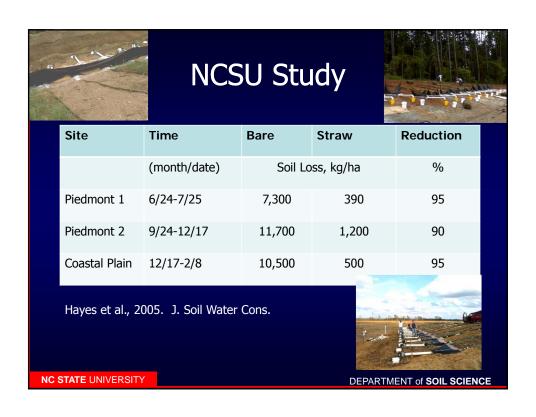
Authors	Year	Material	Slope (%)	Erosion Reduction (%)
Mannering et al.	1963	Wheat straw	5	\geq 2,400 kg/ha = 0 \leq 1,100 kg/ha = 75-90
Bautista et al.	1996	Straw		50-94
Dougherty et al.	2010	Blankets Hydromulch Straw	?	58 53 66
Hayes et al.	2005	Straw	50	83
Faucette et al.	2005	Compost, hydroseed	10	95-99
Sutherland & Zielger	2007	Coir blanket Coir mesh	9	>99 92-99

NC STATE UNIVERSITY

• Insert splash video

NC STATE UNIVERSITY

DEPARTMENT of SOIL SCIENCE


Additional Mulch Benefits

Cover (%)	Soil Loss	Clay (<2 um)	Silt (2-50 um)	Sand (>50 um)
	(% of 0 cover)	Particle	e Size Ratio: Erode	ed/Soil
0	100	0.9	0.9	2
15	50	0.9	1	2.5
30	43	0.8	0.9	3.3
50	40	0.7	1	3.6
70	10	0.7	1	5
90	4	0.6	1	5.5

Shi et al., 2012: Effects of Mulch Cover Rate on Interrill Erosion Processes and the Size Selectivity of Eroded Sediment on Steep Slopes. doi:10.2136/sssaj2012.0273

NC STATE UNIVERSITY

Small Plot, Low Slope Tests

Averages First 5 Storms

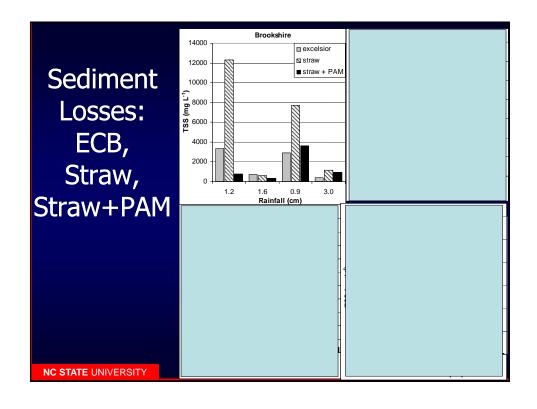
Cover	Runoff		Turbidiity	(NTU)	Erosion (t	:/ha)
	No PAM	PAM#	No PAM	PAM	No PAM	PAM
Bare	6.5a	5.2a	2,279a	1,950a	4.4a	2.3a
Blanket	3.2b	2.1b	1,350ab*	570b*	1.7ab	0.5b
Straw	1.7b	1.9b	763b	371b	0.8b	0.6b
Hydromulch	1.7b	1.4b	349b	142b	0.6b	1.4ab

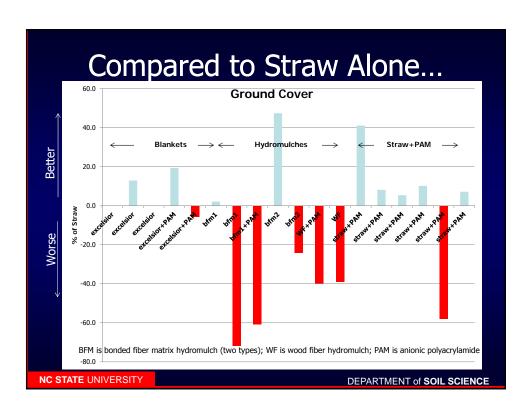
#APS 705, 19 kg/ha

*PAM significantly reduced turbidity for that mulch

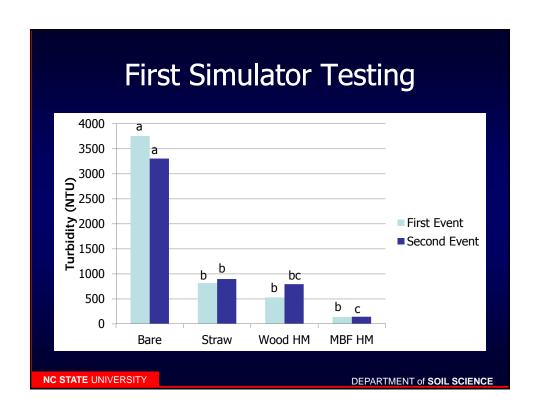
NC STATE LINIVERSITY

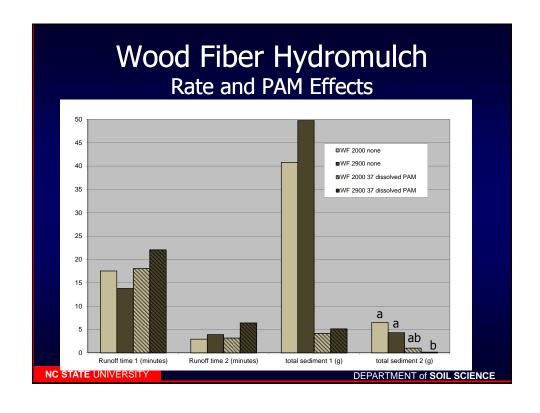
DEPARTMENT of SOIL SCIENCE

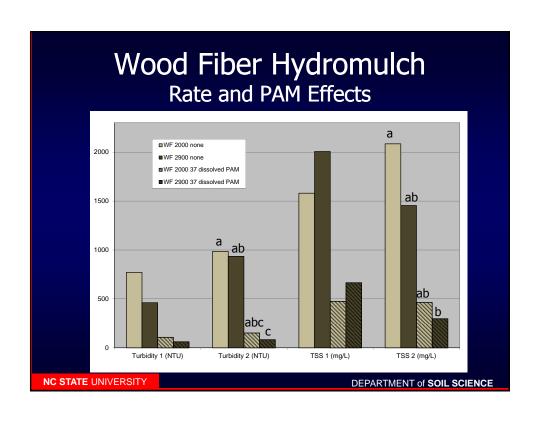

Small Plot, Low Slope Tests

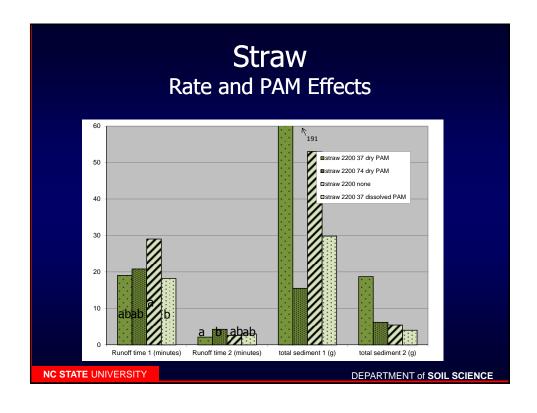

Grass Cover (%)

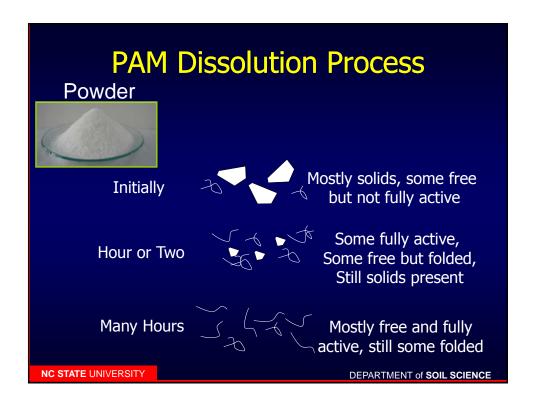
Cover	October 30		November 13		
	No PAM	PAM*	No PAM	PAM	
Bare	24c	23c	38c	44b	
Blanket	39b*	48a*	50ab	55ab	
Straw	48a	50a	56a	65a	
Hydromulch	25c*	30b*	39bc	51b	

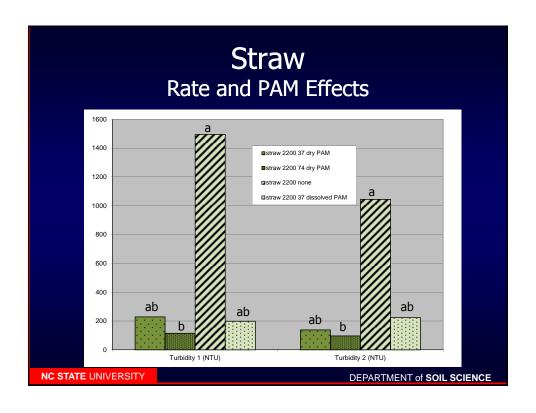

*PAM significantly improved grass cover for that mulch

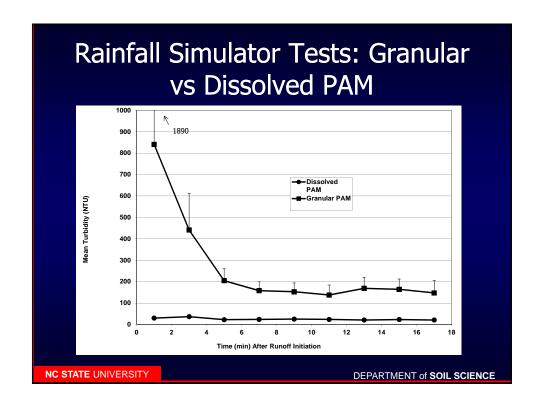

NC STATE UNIVERSITY









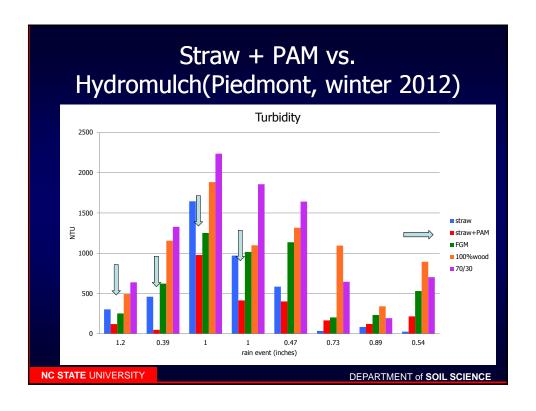

Rainfall Simulator: PAM effects

	Mulch Rate	% Reduction in	% Reduction
Mulch Type	(kg/ha)	Turbidity 1	in TSS 1
С	2000	80.5	63.2
С	3000	52.9	28.1
WF	2000	86.0	70.0
WF	3000	86.5	66.8
S	2200	86.8	81.5


C = Cotton Prototype Hydromulch; WF = Wood Fiber Hydromulch; S = Straw

Adding 37 kg/ha dissolved PAM reduced turbidity and TSS, but differences were not always significant.

NC STATE UNIVERSITY



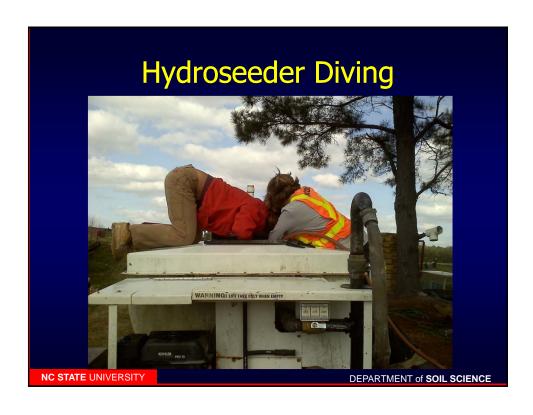
	Site 1,	Site 2,	Site 3,	Site 4,	Site 5,
Treatment	Kinston	West Jefferson	Garner	Apex	Holly Springs
		Total	sediment lo	oss (kg ha ⁻¹)	
Straw			3,685a	51bc	36b
Straw+PAM			1,261ab	29c	29b
SMM			959bc	N/A	35b
BFM			1,930ab	N/A	N/A
FGM			333c	164ab	N/A
WFM			N/A	237a	120ab
WCB			N/A	221ab	210a
•	ed fiber m	. FGM=flexible g atrix. WFM=woo			stabilized mulch matrix. =70:30 wood
NC STATE UNIV	ERSITY			DE	PARTMENT of SOIL SCIENCE

Summary: Erosion

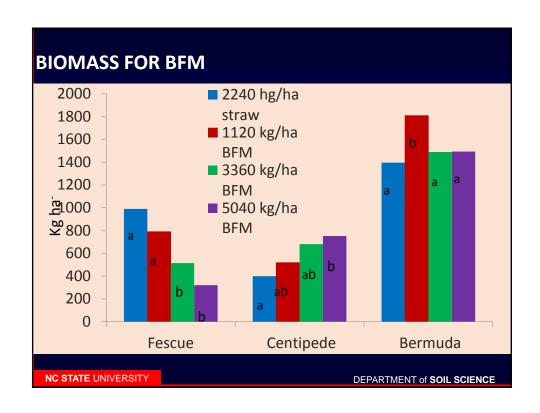
- For 2 sites, all mulches performed similarly.
- For 1 site, 2 of 3 hydromulches were better than straw; 1 hydromulch was better than straw+PAM; straw+PAM was as good as the BFM.
- For 1 site, straw+PAM was better than all 3 hydromulches; straw alone was better than WFM.
- Last site, straw = straw+PAM = SMM; WCB worse than all three.

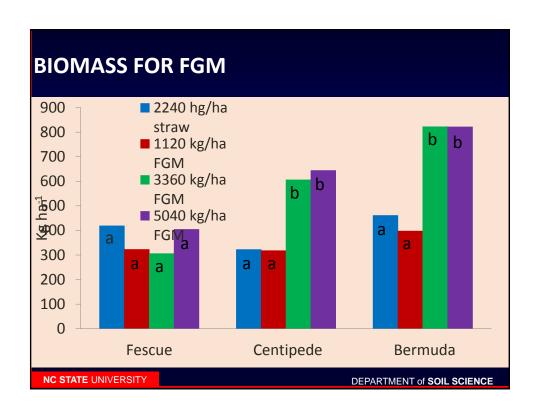
NC STATE UNIVERSITY

	Site 1,	Site 2,	Site 3,	Site 4,	Site 5,
reatment	Kinston	West Jefferson	Garner	Apex	Holly Springs
			Cover (%	o)	
Straw				56a	75b
Straw+PAM				54a	67b
SMM				N/A	93a
BFM				N/A	N/A
FGM				28b	N/A
WFM				34b	94a
WCB				32b	96a


Summary: Vegetation

- For 3 sites, there were no differences in cover for any mulch treatment.
- For 1 site, straw and straw+PAM had significantly more cover than FGM, WFM, and WCB.
- Last site, SMM=WFM=WCB and all were better than either straw treatment. However, high tackifier application was likely the cause.


NC STATE UNIVERSITY


DEPARTMENT of SOIL SCIENCE

Careful with the Tackifier... NC STATE UNIVERSITY Careful with the Tackifier... DEPARTMENT of SOIL SCIENCE

Does PAM Reduce Erosion?

- PAM usually reduced erosion rates for typical ground covers.
- Straw + PAM (30 lb/ac) can outperform blankets and hydromulch.
- But poor ground coverage by mulch may reduce or eliminate PAM benefits.

NC STATE UNIVERSITY

DEPARTMENT of SOIL SCIENCE

Does PAM Improve Vegetation Cover?

- We have not found clear evidence of improved grass stands when PAM was applied.
- Previous work showed small but significant increases in early grass coverage (McLaughlin and Brown, 2006).

NC STATE UNIVERSITY

Conclusions


- Any ground cover is better than none (>90% reduction rule).
- Hydromulches and blankets alone *may* be more effective than straw alone.
- PAM may improve straw performance to hydromulch or blanket level.
- Minimum PAM application rate of **20 lb/acre** is needed to be effective, 20-30 lbs/ac best.
- The application of PAM to bare soil is not a substitute for mulch.

NC STATE UNIVERSITY

DEPARTMENT of SOIL SCIENCE

Careful About Plastic Netting! We state university Careful About Plastic Netting! DEPARTMENT of SOIL SCIENCE

