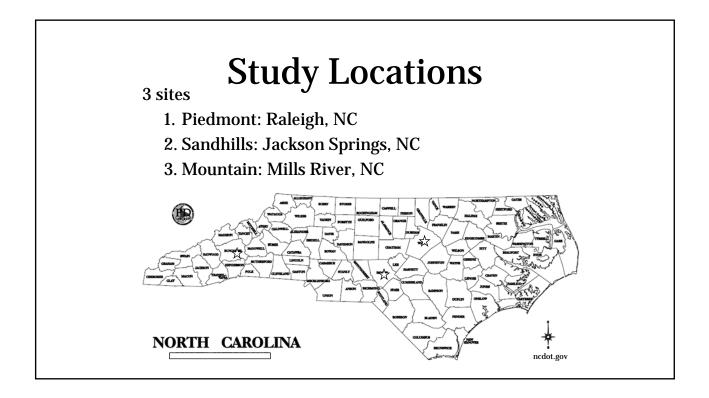
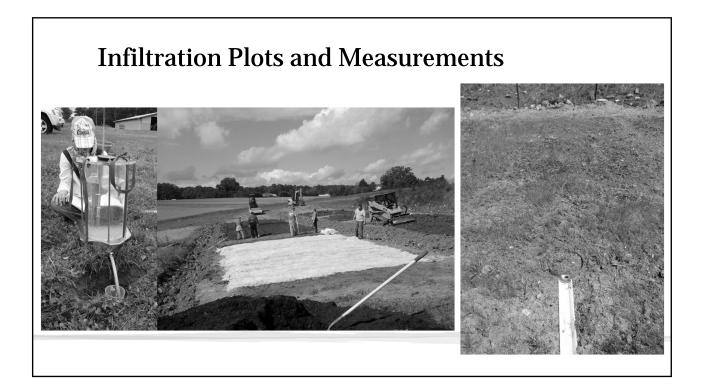
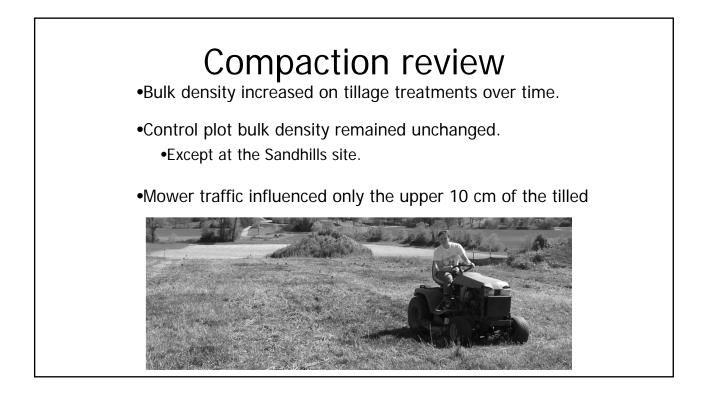

Tying Research into Practical Solutions


JACOB WISEMAN Extension Associate North Carolina State University, Soil Science 919-513-3841 Jacob_wiseman@ncsu.edu





Infiltration Results Piedmont Site 1

- Irrigation rate 14-16 inches/hour

- Different letter means statistically significant within column

	4	15	20	27		
Freatment	Infiltration Rate (in/hr)					
Control	1.7 a	0.8 a	1.1 a	1.7 a		
Shallow Till	13 b	12 b	4.6 a	6.5 ab		
Deep Till	12 b	12 b	7.6 a	11 b		

Infiltration Results Piedmont Site 2

Irrigation rate 10-26 inches/hour; traffic = mowed, no traffic = trimmer
Different letters mean statistically significant within column

Time After Treatment (months)						
	6	13				
Treatment	on Rate (in/hr)					
Control w/ traffic	0.6 a	2.7 a				
Control no traffic	0.4 a	1.2 a				
Deep Till w/ traffic	7.5 ab	2.4 a				
Deep Till no traffic	15 b	7.0 a				
Deep Till + Compost w/ traffic	17 b	18 b				
Deep Till + Compost no traffic	21 b	17 b				

Infiltration Results Sandhills Site

Irrigation rate 14-19 inches/hour; traffic = mowed, no traffic = trimmer
Different letters mean statistically significant within column

Time After Treatment (months							
	1	5	17	24			
Treatment	Infiltration Rate (in/hr)						
Control	0.2 a	1.2 a	3.5 a	2.0 a			
Control + compost	0.1 a	1.2 a	5.4 ab	4.0 ab			
Shallow Till	15 b	15 b	10 bc	9.6 bc			
Shallow Till + compost	15 b	16 b	15 c	11 c			
Deep Till	15 b	13 b	12 bc	11 c			
Deep Till + Compost	16 b	17 b	15 c	11 c			

Infiltration Results Mountain Site

- Irrigation rate 10-21 inches/hour

- Different letter means statistically significant within column

Time After Treatment (months)							
1 2 11							
Treatment*	Infiltration Rate (in/hr)						
Control	0.2 a 0.3 a 3.5 a						
Shallow Till	19 b 12 b 9.5 a						
Deep Till	20 b	13 b	9.5 a				

*Compost had no statistical effect at this site.

Rooting depths:

Compacted soil, shallow till, and deep till respectively

•Tillage is widely used in agriculture and has potential use for construction settings to reduce runoff and improve vegetative growth.

• Deeper tillage = deeper root penetration = less runoff.

•Assuming good vegetation establishment

•Infiltration remained high even with bulk density increases over time from either

- Soil settling
- Lawn mower traffic

•Infiltration rates MAY be able to handle runoff from impervious surfaces into these areas

Treat like a stormwater BMP

Mulches for Controlling Erosion and Establishing Grass on Slopes: What Works

Final Results: Erosion

Freatment	Kinston	West Jefferson			
reatment		West beller son	Garner	Apex	Holly Springs
		Total	sediment lo	ss (kg ha ⁻¹)	
Straw	7.8a	13a	3,685a	51bc	36b
Straw+PAM	6.6a	8a	1,261ab	29c	29b
SMM	N/A	11a	959bc	N/A	35b
BFM	8.9a	12a	1,930ab	N/A	N/A
FGM	N/A	14a	333c	164ab	N/A
WFM	7.4a	N/A	N/A	237a	120ab
WCB	10.5a	N/A	N/A	221ab	210a

PAM=Polyacrylamide. FGM=flexible growth media. SMM=stabilized mulch matrix. BFM=bonded fiber matrix. WFM=wood fiber mulch. WCB=70:30 wood fiber/cellulose blend.

Summary: Erosion

- For 2 sites, all mulches performed similarly.
- For 1 site, 2 of 3 hydromulches were better than straw; 1 hydromulch was better than straw+PAM; straw+PAM was as good as the BFM.
- For 1 site, straw+PAM was better than all 3 hydromulches; straw alone was better than WFM.
- Last site, straw = straw+PAM = SMM; WCB worse than all three.

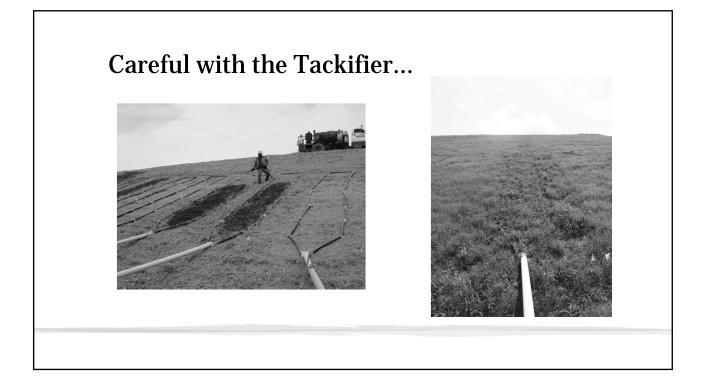
	Site 1,	Site 2,	Site 3,	Site 4,	Site 5,
Freatment	Kinston	West Jefferson	Garner	Apex	Holly Springs
			Cover (%)	
Straw	68a	49a	72a	56a	75b
Straw+PAM	66a	56a	68a	54a	67b
SMM	N/A	32a	65a	N/A	93a
BFM	53a	36a	70a	N/A	N/A
FGM	N/A	37a	59a	28b	N/A
WFM	55a	N/A	N/A	34b	94a
WCB	56a	N/A	N/A	32b	96a

Summary Vegetation:

- For 3 sites, there were no differences in cover for any mulch treatment.
- For 1 site, straw and straw+PAM had significantly more cover than FGM, WFM, and WCB.
- Last site, SMM=WFM=WCB and all were better than either straw treatment. However, high tackifier application was likely the cause.

Does PAM Reduce Erosion?

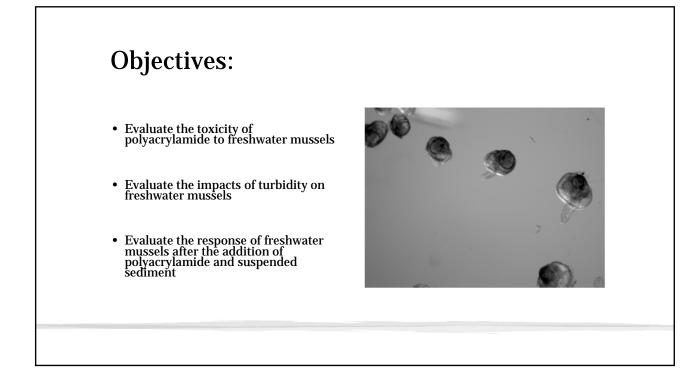
- PAM usually reduced erosion rates for typical ground covers.
- Straw + PAM (30 lb/ac) can outperform blankets and hydromulch.
- But poor ground coverage by mulch may reduce or eliminate PAM benefits.

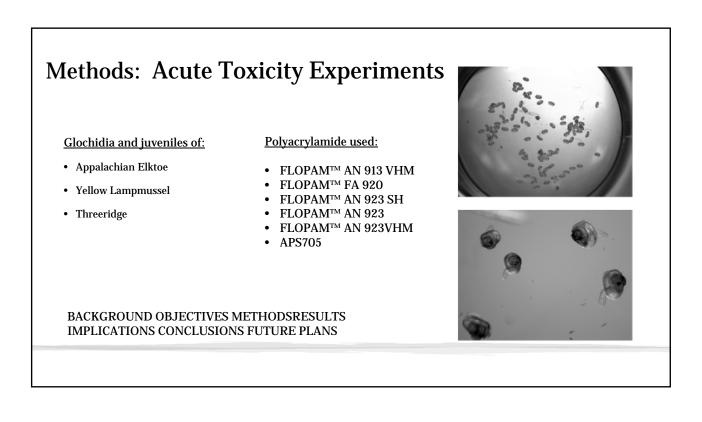

Does PAM Improve Vegetation Cover?

- No clear evidence of improved grass stands when PAM was applied has been discovered.
- Previous work showed small but significant increases in early grass coverage (McLaughlin and Brown, 2006).

Conclusions

- Any ground cover is better than none (>90% reduction rule).
- Hydromulches and blankets alone <u>may</u> be more effective than straw alone.
- PAM may improve straw performance to hydromulch or blanket level.
- Minimum PAM application rate of **20 lb/acre** is needed to be effective, 20-30 lbs/ac best.
- The application of PAM to bare soil is not a substitute for mulch.


POLYACRYLAMIDE TOXICITY TO NATIVE FRESHWATER MUSSELS



Sean B. Buczek, W. Gregory Cope, and Richard A. McLaughlin

sbbuczek@ncsu.edu

Department of Applied Ecology, North Carolina State University

13

PAM Comparative Acute Toxicity

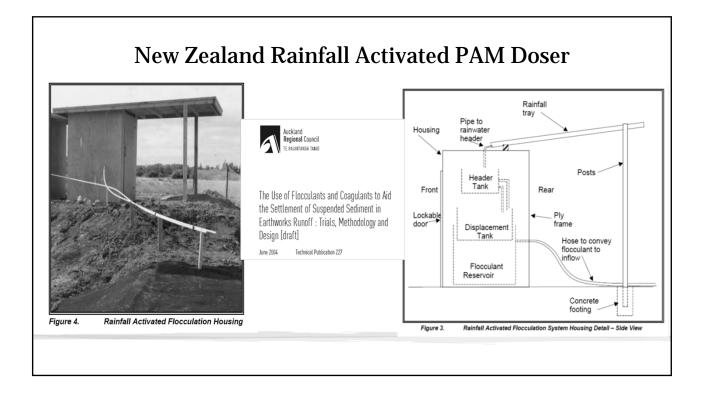
- LC50s for freshwater species
- Daphnia (48h LC50): 152 mg/L
- Fathead minnow (96h LC50): > 100 mg/L
- Mussels(24 -96h LC50): ? mg/L

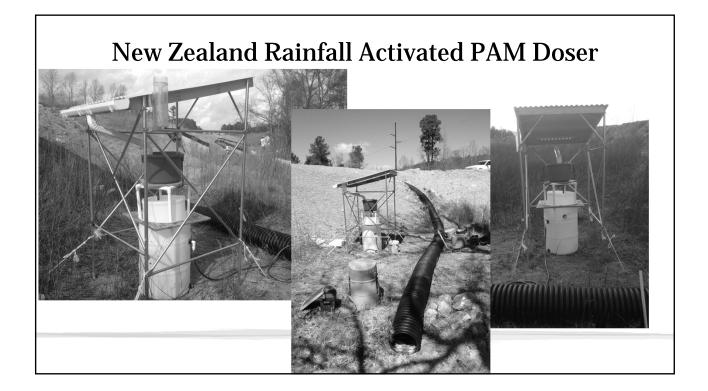
Compound	Appalachian Elktoe Glochidia	Appalachian Elktoe Juvenile	Yellow Lampmussel Glochidia	Yellow Lampmussel Juvenile
FLOPAM [™] AN 913 VHM	>1000	>1000	>1000	>1000
FLOPAM™ FA 920	>1000	>1000	>1000	>1000
FLOPAM™ AN 923 SH	>1000	>1000	>1000	563
FLOPAM™ AN 923	>1000	330	844	127
FLOPAM [™] AN 923VHM	>1000	>1000	>1000	>1000
APS705	>1000	>1000	>1000	>1000

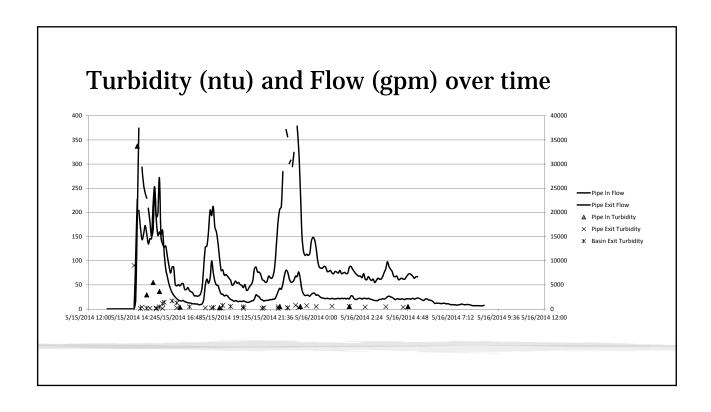
Results

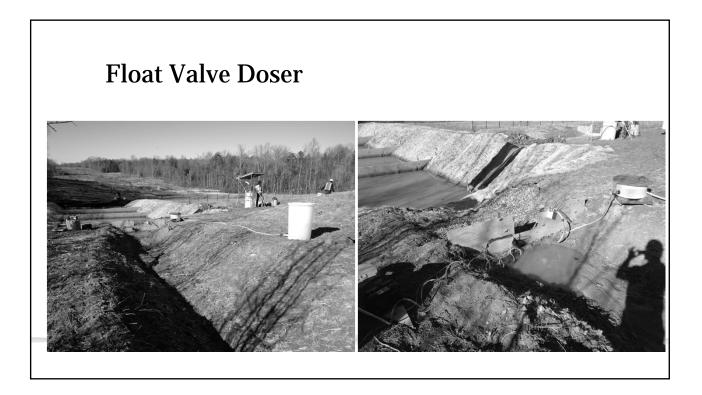
- Yellow Lamp mussel more sensitive
- Juveniles appear more sensitive
- AN923 most toxic

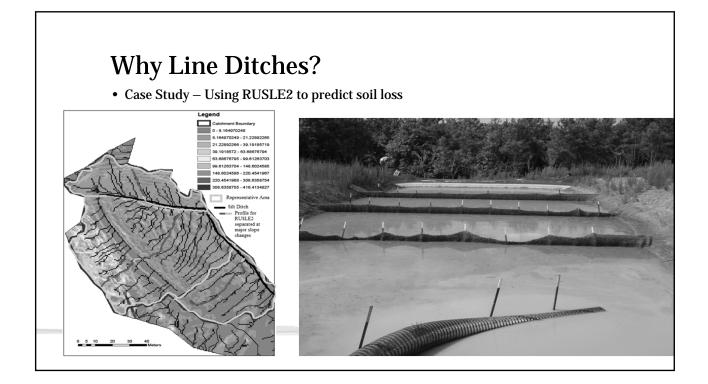
• Acute exposure -highly relevant for application

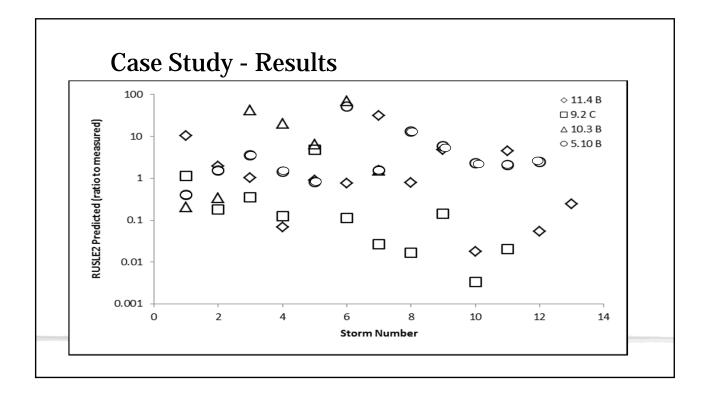

Compound	Appalachian Elktoe Glochidia	Appalachian Elktoe Juvenile	Yellow Lampmussel Glochidia	Yellow Lampmussel Juvenile
FLOPAM™ AN 913 VHM	>1000	>1000	>1000	>1000
FLOPAM™ FA 920	>1000	>1000	>1000	>1000
FLOPAM™ AN 923 SH	>1000	>1000	>1000	563
FLOPAM™ AN 923	>1000	330	844	127
FLOPAM [™] AN 923VHM	>1000	>1000	>1000	>1000
APS705	>1000	>1000	>1000	>1000

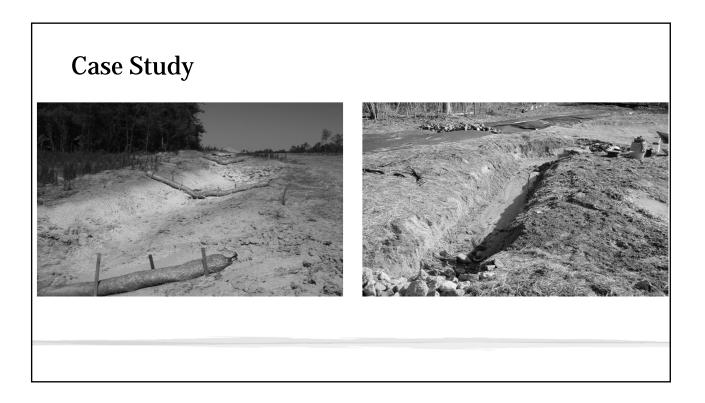

Accomplishing additional objectives

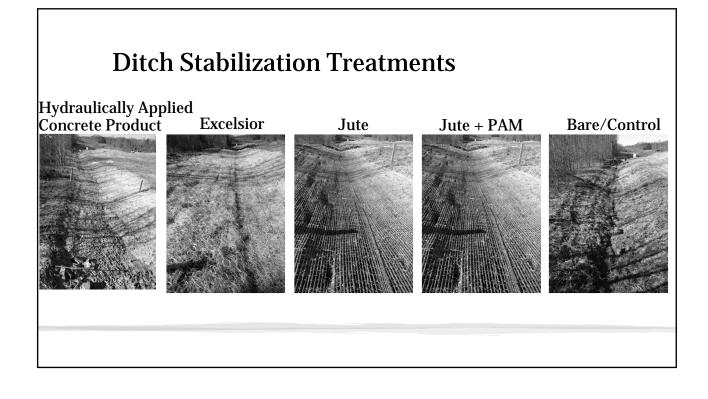

- Evaluate the impacts of <u>turbidity</u> on freshwater mussels
- Evaluate the response of freshwater mussels in suspended <u>sediment</u> after addition of polyacrylamide
- More results to come!

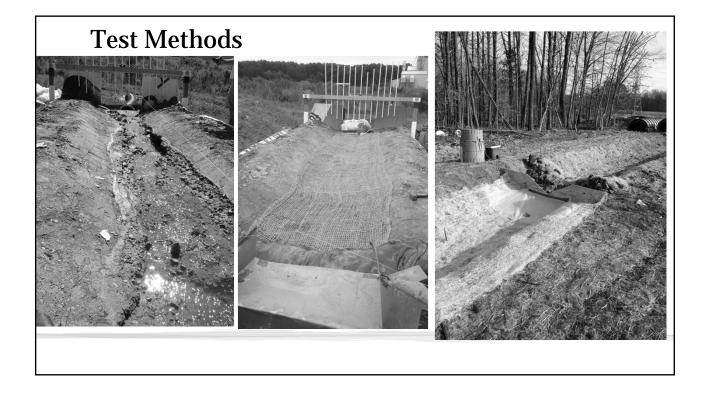


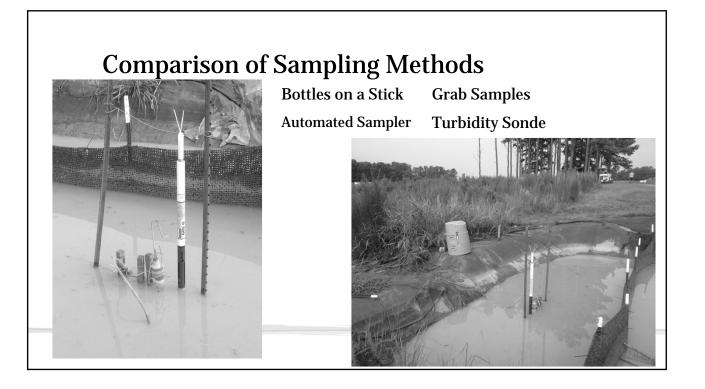

Ongoing Projects








Case Study	- Results
------------	-----------


Basin ID	Days	Number of Storms	Total Precipitation (mm)	Field Sediment Yield (Mg)	RUSLE2 Representative Slopes from Surveys (Mg)	RUSLE2 Representative Slopes from Plans (Mg)
11.4 B (CG)	52	4	69	0.674	0.651	1.96
11.4 B (MG)	181	9	89	28.0	2.64	4.95
9.2 C (CG)	146	9	67	30.2	1.74	1.89
9.2 C (MG)	32	2	14	14.5	0.330	1.26
10.3 B (FG)	175	6	154	1.37	0.178	0.948
10.3 B (PP)	18	1	28	0.00227	0.000267	0.00207
5.10 B (CG)	134	10	150	5.74	3.31	7.62

