High Resolution Indicators for Local Drought Monitoring

REBECCA CUMBIE, STATE CLIMATE OFFICE OF NC, NCSU

Monitoring Drought

- Multiple indicators, multiple sources
- Local detail important
Point-Based

Climate-Division Level

http://drought.unl.edu/MonitoringTools/ClimateDivisionSPI/ArchivedSPIMaps.aspx

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/regional_monitoring/palmer.gif
How do we get Local Detail?

- Utilize Multisensor Precipitation Estimates (MPE)
- Combination of:
 - Radar-derived precipitation
 - Surface gauge observations
 - Satellite-derived precipitation
 - PRISM-precipitation
 - Calculate drought indices

MPE -- Advantages

- High-resolution (4.7625 km)
- Available over contiguous US
- Estimates precipitation where no/few gauges located
- Updated daily (12UTC to 12UTC)
MPE -- Disadvantages

- Limited in areas with:
 - Poor radar coverage
 - Few surface observations

PRISM Grids

- Parameter-elevation Regressions on Independent Slopes Model
- Interpolation of station-based precipitation measurements
- Takes into account:
 - Elevation
 - Topographic facet
 - Proximity to water bodies
- PRISM normals (1981-2010)
- Daily and monthly
- Temperature
- Precipitation (historical)
High Resolution Drought Indicators

- Precipitation
- Percent of Normal
- Standardized Precipitation Index (SPI)
 - SPI Blend
- Keetch-Byram Drought Index (KBDI)
- Palmer Drought Indices (Z-Index, PHDI, PDSI, PMDI)
- Standardized Precipitation Evapotranspiration Index (SPEI)
Standardized Precipitation Index (SPI)

- Proposed by McKee et al., 1993
- Precipitation-based drought index
- Observed precipitation is represented as standard deviations away from mean
- SPI is normally distributed
 - Mean and median equal zero
 - Values typically ±2
- Multiscalar
- Normalized to location’s historical distribution

SPI

- Sum MPE for given time scale
- Sum PRISM normals for same time scale
- Divide MPE by PRISM
- Calculate cumulative probability
 - Use interpolated distribution parameters
- Transform using inverse normal function to SPI
SPI Evaluation

- Comparison against SPI from:
 - WWDT (PRISM-based)
 - NCDC (station-based; climate division)
 - DDIT (station-based; multiple spatial units)

- Strongly correlated at climate division scale
- Pixel-to-station comparisons show strong agreement
- Offers spatial and temporal detail not captured in other products
SPI Blend

• Proposed by McRoberts and Nielsen-Gammon (2011)
• Premise: Current drought severity influenced by recent precipitation
 • Conventional SPI gives equal weight to all precipitation
• SPI Blends give greater weight to more recent precipitation
 • All other aspects of calculation the same
SPI Blend Evaluation

• Comparison to “conventional” SPI and USDM
 • 2012 Central Great Plains Drought
 • 2007-2008 Carolinas Drought

• Results:
 • SPI better matched USDM in Carolinas
 • SPI Blend better matched USDM in Great Plains

• Comparison to in situ soil moisture
 • SPI Blend better match

How can I view these?

www.climate.ncsu.edu/drought
In Progress...

Palmer Drought Indices

- Palmer, 1965
- Simplified climatological balance for each month
 - ET, Runoff, Soil Recharge and Loss, etc.
- Calculate historical “climatologically appropriate” values
 - Use PRISM temp and precip
 - Over 1981-2010 period
- Data:
 - Summed daily MPE
 - Monthly PRISM temperature
Monthly Palmer Drought Indices

- In the process of evaluating
- Will be added to web display
- Next steps: updated daily??

Keetch-Byram Drought Index (KBDI)

- Developed in 1960s by 2 fire scientists at USFS
- Represents depth of dryness in soil
- Varies from 0 (no dryness) to 800
- Don’t need to measure soil moisture
 - Uses daily maximum temperature, daily total precipitation, annual average precipitation
KBDI

• Preliminary evaluation is promising
• Comparison to station-based (and gridded?) KBDI to come

Standardized Precipitation Evapotranspiration Index (SPEI)

• Developed by Vicente-Serrano et al., 2010
• Based on climatological balance:
 • Precipitation – Potential Evapotranspiration
 • Computationally similar to SPI
• Use daily MPE, daily PRISM temperature
• Right now:
 • Historical distribution parameters
 • Preliminary SPEI
 • Evaluation to come next
What’s next?

- Incorporate into active drought (water) monitoring
- Can we establish relationships with drought indicators?
 - Soil moisture
 - Streamflow
 - Groundwater
 - Vegetation (NVDI)

Acknowledgements

Gridded drought products were developed with support from USDA NIFA, NOAA CPO, and NIDIS.

Special thanks to NWS and PRISM for making data and products freely available.

Partners:
Questions?

Email: rvcumbie@ncsu.edu

www.climate.ncsu.edu/drought