1. Existing agriculture paradigm ≠ Resiliency

- Thermodynamically imbalanced
 - 10:1 caloric food-input ratio

- Reliant on depleting resources
 - Soil bank
 - Water supply
 - Fossil fuels
 - Mined nutrients (e.g., phosphorus)

- Ecologically degrading
Resilient Food Regions

- **Urban Agriculture**
 - Local Inputs
 - Models: intensive vegetables, vertical farming, fungiculture, aquaculture

- **Rural Restoration**
 - Perennial-based farming systems
 - Agroforestry + Keyline Design + Managed Intensive Grazing

- **Urban/rural Interface**
 - Waste-to-resource exchanges (e.g., phosphorus, organics)
 - Value-chain connections = profitable farms = resource protection

The Tao of Stormwater

2. Watershed goals require broad, stakeholder engagement.
 - Socio-economic strategies
 - Multifunctional Infrastructure + Integrated Planning

The Tao of Stormwater

Urban Agriculture = Green Infrastructure
Why Invest in Urban Ag?
Socio-Economics

- Community Revitalization
 - Fresh food access
 - Public health improvement
 - Crime reduction
 - Vocational training
 - Beautification and greening
 - Social connection

- Marketability
 - Increased property values
 - Micro-enterprises

Evidence of Biophilia
Spartanburg, SC
Environmental Benefits

- Soil Building:
 - Organic matter
 - Water storage
 - Microbiology

- Hydrologic: retention + infiltration + ET

- Urban biodiversity
 - Habitat + beneficial/supporting plant species

- Heat island and air quality

- Reduced carbon/water footprints

Problem to Solution:
RAINWATER

- Most limiting factor in plant growth
- Oxygenated
- Atmospheric deposition = free fertilizer
 - 70-90% of TN in urban runoff (Wu et al., 1998)
 - 15-30% of TP (Bannerman et al., 1993)
 - Minerals and microorganisms
 - Sulfur (essential to amino acid formation)

- Desirable pH
- Cost effective
Problem to Solution

- Match quality of runoff with intended end use

<table>
<thead>
<tr>
<th>Source</th>
<th>Storage or Treatment</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rooftops</td>
<td>Cisterns (intensive) Green Roofs</td>
<td>Active Irrigation</td>
</tr>
<tr>
<td>Managed Pervious</td>
<td>LID Features</td>
<td></td>
</tr>
<tr>
<td>Roadways Parking Lots</td>
<td>Engineered BMPs</td>
<td></td>
</tr>
</tbody>
</table>

- An Emerging Land Use

- Residential Lots

- Institutions
 - K-12
 - College farms

- Public Parks
 - Food forests

- Commercial Rooftops

- Suburban
 - Ag-supported development
County-level: Cuba

- Country-wide urban farming movement
- Supplies 90% of Havana’s vegetable consumption

Ultra urban: NYC Rooftop Farms

- Brooklyn Navy Yard
- Chicago Botanical Garden
- Eagle St. Rooftop Farm
Rust Belt Cities

- Vacant lot conversions
- Ex. Detroit – 15 acres of idle land in food production

Source: The Anthropik Network

Ag-Supported Developments

- Village Homes (225-home, 70-acre subdivision, Davis, CA)
 - Early LID pioneer (started in 1975)
 - Edible landscaping
 - 23 acres in food production
 - Incorporated into stormwater management systems
Urban Stormwater Farm

M.B. Liebman et al. (Melbourne AU)

- **Goals:**
 - Model: large-scale stormwater treatment and reuse for agriculture
 - Quantify: hydrologic, energy, and economic benefits

- **Methods:**
 - Runoff source: 740 acre area (40% impervious)
 - Runoff sink: 128 acre residential development (38% “farmed”)
 - 41-year water balance simulation

- **Results:**
 - 81% of farm irrigation offset
 - 14 year payback period
 - Excluded revenue from 560 tons/yr produce

Barriers to Broader Use

- **Land access** (cost, zoning, competition)
- **Water access**
- **Legal/regulatory issues**
 - Permitting
 - Land use and ordinances
- **Safety and compliance**
 - Soil contamination (e.g., Brownfields)
 - Food safety
- **Gaps in education, experience, and business training**
 - “Status-quo” within local governments and public utilities
 - Start-up and operating costs
R & D Needs/Opportunities

- **TBL Metrics for Improved Decision Making**
 - Environmental: water/sediment/nutrient balance, urban soil contaminants, etc.

- **Urban Agriculture Planning & Implementation Toolbox**
 - Codes & ordinances
 - Economic models and business training
 - Design standards and guidance
 - Site planning tools (e.g., for prioritizing sites)
 - Public education and outreach

- **Pilot Projects**
 - To generate data and build local capacity

Comprehensive Support

- **Diversified Stakeholder Committee**
 - “De-silo” urban agriculture
 - Barriers analysis
 - Policy and implementation planning

- **Technical service provider (3rd party)**

 Ohio City Farm – Cleveland (Resilience.org)