1



# UNCW

#### Quantification of Fecal Bacteria Grazing by Micro-Zooplankton in Stormwater Control BMPs

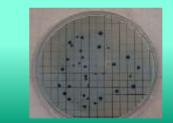
Jade M. Burtchett, Michael A. Mallin, Matthew R. McIver, Lawrence B. Cahoon and Robert F. Whitehead University of North Carolina Wilmington Center for Marine Sciences Department of Biology and Marine Biology Department of Chemistry

WRRI #14-02-W

### **Stormwater Runoff**

- Major source of coastal water pollution
- Problem enhanced by increasing urbanization within the watershed
- Not only health concerns, economic also (i.e shellfish harvesting areas closing)




## **Fecal Bacteria**

- most directly impacts human health and economy
- commonly sourced from concentrated animal feeding operations (CAFOs), sewage effluents, and widely sourced from **urban and suburban stormwater**



### **Fecal Bacteria Regulations**

- 14 coliforms per 100 ml to close a shellfish bed
- 200 coliforms per 100 ml is considered unsafe to for humans to swim





### **Basic BMP Guidelines**

#### Plan for stormwater management

- Sustainable and eco-friendly
- Improve water quality
- Low impact development (LID)

#### Mimic natural hydrology

• Promote infiltration, retention and ET

#### Treat stormwater runoff

- Wet detention ponds
- Wetlands



### Micro-zooplankton

- Heterotrophic and mixotrophic planktonic organisms
- Normally between 10 and 200 µm
- 2 main categories, metazoan & protozoan Protozoans



# **Study Objectives**

- 1. Verify that micro-zooplankton grazing is a significant factor in fecal bacterial removal from storm water.
- 2. Compare removal rates in a constructed wet detention pond and a constructed wetland.
- 3. Examine the effects of seasonality on microzooplankton removal of fecal coliforms.

# **Study Objectives (continued)**

4. Conclude if there's a correlation between chlorophyll *a* levels and micro-zooplankton removal of fecal coliforms.

5. Calculate DOC concentrations and look for correlations with grazing rates.

6. Determine the importance of rainfall on concentration of fecal coliforms.

# Hypotheses

- 1. The wetland will have higher fecal coliform removal rates than the wet detention pond.
- 2. Grazing rate is inversely related to Growth rate.
- 3. Seasonality is a factor in the efficacy of fecal coliform removal.
- 4. Rainfall significantly impacts the fecal concentrations, and BMP effectiveness.

## **Hypotheses (continued)**

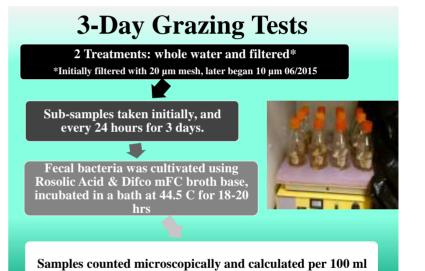
- 5.Dissolved Organic Carbon (DOC) concentrations will be positively correlated with microzooplankton Grazing rates at both sites.
- 6.Chlorophyll *a* will be positively related with growth rates.
- 7.Grazing rates will be higher in the summer (increased temperature, vegetation, etc...)

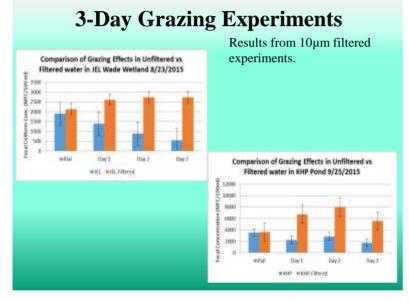
## **Constructed Wetland** JEL Wade

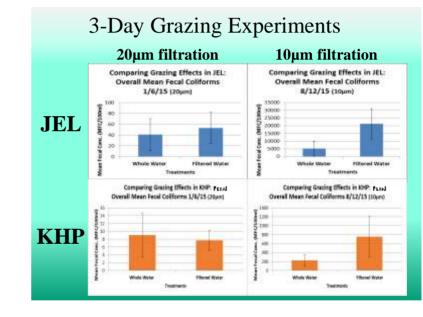
- Constructed to treat stormwater runoff
- Drains a 2,393 ha watershed
- 22% impervious surface coverage
- Dense, diverse vegetation
- Average fecal load reduction of 99%



## **Constructed Wet Detention Pond Kings Highway Pond**

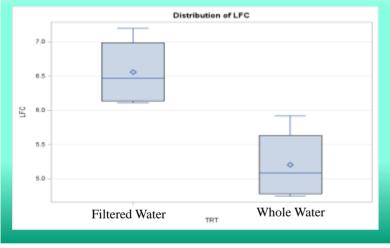

- Located behind a retail parking lot
- Significant drainage and run-off from impervious surfaces.
- Little vegetation
- Small resident population of geese





## **Field Analysis**

- Field analysis using YSI
- Water collection in 25-L carboys
- Amber 150ml bottles for chla analysis





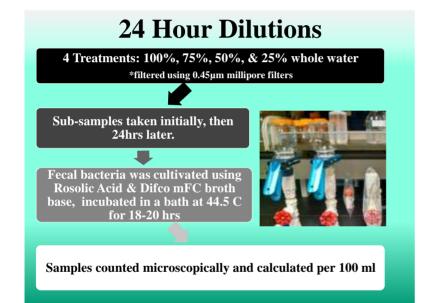


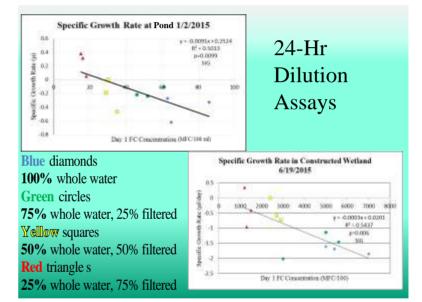



#### 8

### 3-Day Grazing Experiments Demonstrating Fecal Coliform Removal by Micro-zooplankton




Least Squares Difference (LSD) statistical results from experiments in JEL Wade constructed wetland (JEL) and King's Highway wet detention pond (KHP) using 20µm mesh for filtration


| Site | Date      | Whole Mean | Filtered Mean | Grazing Sig? (p<0.05) |
|------|-----------|------------|---------------|-----------------------|
| JEL  | 7/15/2014 | 172        | 150           | No                    |
| JEL  | 7/29/2014 | 611        | 456           | No                    |
| JEL  | 9/1/2014  | 125        | 155           | No                    |
| JEL  | 1/6/2015  | 41         | 53            | No                    |
| JEL  | 2/11/2015 | 58         | 70            | No                    |
|      |           |            |               |                       |
| KHP  | 7/23/2014 | 2622       | 2622          | No                    |
| KHP  | 7/29/2014 | 123        | 105           | No                    |
| KHP  | 9/1/2014  | 20         | 17            | No                    |
| KHP  | 1/6/2015  | 9          | 8             | No                    |
| KHP  | 2/11/2015 | 18         | 16            | No                    |

| Least Squares Difference (LSD) statistical results from experiments in JEL Wade constructed     |           |            |               |                       |  |  |  |  |
|-------------------------------------------------------------------------------------------------|-----------|------------|---------------|-----------------------|--|--|--|--|
| wetland (JEL) and King's Highway wet detention pond (KHP) using $10 \mu m$ mesh for filtration. |           |            |               |                       |  |  |  |  |
| Site                                                                                            | Date      | Whole Mean | Filtered Mean | Grazing Sig? (p<0.05) |  |  |  |  |
| JEL                                                                                             | 8/12/2015 | 5250       | 21275         | Yes                   |  |  |  |  |
| JEL                                                                                             | 8/23/2015 | 1187       | 2552          | Yes                   |  |  |  |  |
| JEL                                                                                             | 8/28/2015 | 878        | 1246          | No                    |  |  |  |  |
| JEL                                                                                             | 9/25/2015 | 5350       | 9383          | No                    |  |  |  |  |
| JEL                                                                                             | 10/6/2015 | 3375       | 3050          | Yes                   |  |  |  |  |
|                                                                                                 |           |            |               |                       |  |  |  |  |
| KHP                                                                                             | 8/12/2015 | 225        | 755           | Yes                   |  |  |  |  |
| KHP                                                                                             | 8/19/2015 | 44         | 54            | No                    |  |  |  |  |
| KHP                                                                                             | 8/23/2015 | 888        | 3517          | Yes                   |  |  |  |  |
| KHP                                                                                             | 8/28/2015 | 81         | 335           | Yes                   |  |  |  |  |
| KHP                                                                                             | 9/25/2015 | 2583       | 5975          | Yes                   |  |  |  |  |
| KHP                                                                                             | 10/6/2015 | 1971       | 2008          | No                    |  |  |  |  |

## Results of 3-Day Grazing Experiments

- Statistics run with SAS.
- Data were tested for normality using the Shapiro-Wilk test and log-transformed.
- 20µm filtration results showed 0 significant results in the five experiments ran at both sites.
- $10\mu m$  filtration results showed 3 out of 5 significant results in the wetland, and 4 out of 6 at the detention pond





| 24-Hour Dilution Assays |            |           |        |          |                |               |  |
|-------------------------|------------|-----------|--------|----------|----------------|---------------|--|
| JEL Wade Wetland        |            |           |        |          |                |               |  |
| Site                    | Dilution   | Intercept | Slope  | Р        | Sig. (-) slope | Grazing sig.? |  |
| JEL                     | 8/12/2014  | 0.9115    | -0.001 | 0.003    | Yes            | Yes           |  |
| JEL                     | 8/26/2014  | 0.3543    | -4E-04 | 0.022    | Yes            | Yes           |  |
| JEL                     | 9/2/2014   | 0.2203    | -0.001 | 0.168    | No             | No            |  |
| JEL                     | 12/11/2014 | 0.6958    | -0.002 | 0.0004   | Yes            | Yes           |  |
| JEL                     | 1/25/2015  | 0.2161    | -5E-04 | 0.526    | No             | No            |  |
| JEL                     | 6/8/2015   | 0.2007    | -0.003 | 0.0002   | Yes            | Yes           |  |
| JEL                     | 6/19/2015  | 0.0201    | -3E-04 | 0.006    | Yes            | Yes           |  |
| JEL                     | 12/8/2015  | 0.8268    | -0.019 | 9.03E-05 | Yes            | Yes           |  |
| JEL                     | 2/10/2016  | 0.902     | -0.015 | 1.16E-06 | Yes            | Yes           |  |
| JEL                     | 2/15/2016  | 0.2558    | -0.002 | 0.018    | Yes            | Yes           |  |
| JEL* forebay            | 2/25/2016  | 0.6006    | -0.021 | 1.81E-05 | Yes            | Yes           |  |
| JEL* outfall            | 2/25/2016  | 0.5739    | -0.019 | 0.015    | Yes            | Yes           |  |

## 24-Hour Dilution Assays Kings Highway Detention Pond

| Site | Dilution   | Intercept | Slope | Р        | Sig. (-) slope | Grazing sig.? |
|------|------------|-----------|-------|----------|----------------|---------------|
| KHP  | 8/6/2014   | 0.6221    | -0    | 0.249    | No             | No            |
| KHP  | 8/11/2014  | 0.7889    | -0    | 0.0006   | Yes            | Yes           |
| KHP  | 8/19/2014  | -1.58     | 0.01  | 0.357    | No             | No            |
| KHP  | 9/18/2014  | 0.0166    | -0    | 0.069    | No             | No            |
| KHP  | 12/16/2014 | 0.3614    | 0.004 | 0.779    | No             | No            |
| KHP  | 1/2/2015   | 0.2524    | -0.01 | 0.009    | Yes            | Yes           |
| KHP  | 1/19/2015  | 0.1976    | -0.02 | 0.072    | No             | No            |
| KHP  | 12/9/2015  | 0.8268    | -0.02 | 9.03E-05 | Yes            | Yes           |
|      |            |           |       |          |                |               |

### Environmental Factors Influencing Microzooplankton Grazing in the Wet Detention Pond

- Initial Fecal Coliform concentrations positively correlated with Water Temperature (R=0.74, p=0.04)
- Grazing Rate has a near-significant positive relation with Initial Fecal Coliform concentrations\* (R=0.63, p=0.09)



• Water Temperature negatively correlated with Turbidity (R= -0.73, p=0.04)

### Environmental Factors Influencing Microzooplankton Grazing in the Constructed Wetland

- Initial Fecal Coliform concentrations strongly correlated with Water Temperature\* (R=0.75, p=0.005)
- Grazing Rate strongly correlated with Initial Fecal Coliform concentrations\* (R=0.83, p=0.0009)
- Grazing Rate positively correlated with Water Temperature (R=0.57, p=0.051)
- Bacterial Growth Rate negatively correlated with microzooplankton Grazing Rate (R= -0.64, p=0.023)
- Chlorophyll *a* strongly correlated with Rainfall amount (R=0.94, p=0.006)

# Results of 24-Hour Dilution Assays

- Regressions were run on all 24 hour assays
- 10 out of 12 experiments in the wetland yielded significant removal by grazing (p<0.05)
- 3 (almost 5) out of 8 trials in the detention pond experiments showed significant removal by grazing (p<0.05)

### Additional Laboratory Analyses Dissolved Organic Carbon (DOC)

- 20 ml samples filtered
- 2 duplicates per site
- Initial concentration observed
- Used EPA 415.3 method for analysis

#### Chlorophyll a

- 50 ml samples filtered
- 2 duplicates per site
- Initial concentration observed
- Used EPA/600/R-97/072 method for analysis





# Overview of Results

- Seasonal changes showed no obvious difference on grazing effects
- The constructed wet detention pond had significant removal of the bacteria, but less often than the wetland
- Overall, results show grazing is a significant factor removing fecal coliform bacteria at both the constructed wetland, and wet detention pond

## UNCW

## Future Research



- Qualitative analysis and comparison of microzooplankton found at both locations.
- Interpret DOC and chlorophyll *a* samples from both sites and look for correlations.
- Collect and analyze macrophyte vegetation species role in stimulating micro-zooplankton grazing.\*

# Thank you for your time, QUESTIONS?

THAT'S STRANGE, I DON'T REMEMBER ORDERING OUT FOR DELIVERY, GUESS I SHOULDN'T LET IT



AND WILLY'S PRANK BACKFIRES.

### References

- Mallin, M.A., S.H. Ensign, M.R. McIver, G.C. Shank and P.K. Fowler. 2001. Demographic, landscape, and meteorological factors controlling the microbial pollution of coastal waters. Hydrobiologia 460:185-193.
- Mallin, M.A., J. McAuliffe, M.R. McIver, D. Mayes and M.R. Hanson. 2012. High pollutant removal efficacy of a large constructed wetland leads to receiving stream improvements. Journal of Environmental Quality 41:2046-2055.
- NCDWQ. 2007. Stormwater Best Management Practices Manual, North Carolina Division of Water Quality, North Carolina Department of Environment and Natural Resources, Raleigh, N.C.
- NRC. 2009. Urban Stormwater Management in the United States. National Research Council, The National Academies Press, Washington, D.C.
- Pennington, S.R., M.D. Kaplowitz and S.G. Witter. 2003. Reexamining best management practices for improving water quality in urban watersheds. Journal of the American Water Resources Association, 39:1027-1041.
- Sanger, D., A. Blair, G. DiDonato, T. Washburn, S. Jones, G. Riekerk, E. Wirth, J. Stewart, D. White, L. Vandiver and A.F. Holland. 2013. Impacts of coastal development on the ecology and human well-being of tidal creek ecosystems in the U.S. Southeast. Estuaries and Coasts DOI:10.1007/s12237-013-0635-v.
- Sehar, S., Sumera, S. Naeem, I. Perveen, N. Ali, and S. Ahmed. 2015. A comparative study of macrophytes influence on wastewater treatment through subsurface flow hybrid constructed wetland. Ecological Engineering 81:62-69.
- SCDHEC 2007. State of the Knowledge Report: Stormwater Ponds in the Coastal Zone. South Carolina Department of Health and Environmental Control, Office of Ocean and Coastal Resource Management.
- Schlotzhauer, S.D. and R.C. Littell. 1997. SAS system for elementary statistical analysis, 2nd Edition. SAS Institute, Inc., SAS Campus Dr., Carv, N.C.
- Stenstrom, T.A. and A. Carlander. 2001. Occurrence and die-off of indicator organisms in the sediment in two constructed wetlands. Water Science and Technology 44:223-230.
- Surbeck, C., S. Jiang, and S. Grant. 2009. Ecological Control of Fecal Indicator Bacteria in an Urban Stream. Environ. Sci. Technol. 2010, 44:631–637
- Tanner, C., and T. Headley. 2011. Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecological Engineering Vol. 37: 474-486.
- Vymazal, J. 2005. Removal of enteric bacteria in constructed treatment wetlands with emergent macrophytes: a review. Journal of Environmental Science and Health 40:1355-1367.
- Welschmeyer, N.A. 1994. Fluorometric analysis of chlorophyll α in the presence of chlorophyll b and phaeopigments. Limnology and Oceanography, 39: 1985-1993.
- Woodcock, T.S., M.C. Monaghan and K.E. Alexander. 2010. Ecosystem characteristics and summer secondary production in stormwater ponds and reference wetlands. Wetlands 30:461-474.

### **References**

- · Alexander, L.M., Heaven, A., Tennant, A., Morris, R., 1992. Symptomology of children in contact with sea water contaminated with sewage. Journal of Epidemiology Community Health 46:340-344.
- · APHA. 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington, D.C.
- · Brisson, J, and F. Chazarenc. 2009. Maximizing pollutant removal in constructed wetlands: Should we pay more attention to macrophyte species selection. Science of the Total Environment. 407:3923-3930
- Chudoba, E.A., M.A. Mallin, L.B. Cahoon and S.A. Skrabal. 2013. Stimulation of fecal bacteria in ambient waters by experimental inputs of organic and inorganic phosphorus. Water Research 47:3455-3466.
- · Davies, C.M. and H.J. Bavor. 2000. The fate of stormwater-associated bacteria in constructed wetland and water pollution control pond systems. Journal of Applied Microbiology 89:349-360.
- Day, R.W. and G.P. Quinn. 1989. Comparisons of treatments after an analysis of variance in ecology. Ecological Monographs 59:433-463. Diaz, F. 2010. Efficacy of constructed wetlands for removal of bacterial contamination from aericultural return flows. Agricultural Water Management 97:1813-1821
- England, G. and S. Stein. 2007. Stormwater BMPs: Selection, Maintenance and Monitoring. Forester Press, Santa Barbara, CA.
  Envoronmental Protection Agency. 2002. Sampling and Analytical Procedures for GLNPO's WQS. Standard Operating Procedure for Dissolved Organic Carbon. LG211.
- · Field, R., A.N. Tafuri, S. Muthukrishnan, B.A. Acquisto and A. Selvakumar. 2006. The Use of Best Management Practices (BMPs) in Urban Watersheds. DEStech Publications, Inc. Lancaster, PA
- Gerba, C.P., J.A. Thurston, J.A. Falabi, P.M. Watt and M.M. Karpiscak. 1999. Optimization of artificial wetland design for removal of indicator microorganisms and pathogenic protozoa. Water Science and Technology 40:363-368.
- · Hathaway, J.M. and W.F. Hunt. 2012. Indicator bacteria performance of storm water control measures in Wilmington, North Carolina. Journal of Irrigation and Drainage Engineering ASCE 138:185-197.
- · Holland, A.F, D. Sanger, C. Gawle, S. Lerberg, M. Santiago, G. Riekerk, L. Zimmerman and G. Scott. 2004. Linkages between tidal creek ecosystems and the landscape and demographic attributes of their watersheds Journal of Experimental Marine Biology and Ecology. 298: 151-178
- · Karathanasis, A.D, C.L. Potter and M.S. Coyne. 2003. Vegetation effects on fecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater. Ecological Engineering 20: 157-169.
- Landry, MR, and RP. Hassett. 1982. Estimating the grazing impact of marine micro-zooplankton. Marine Biology 67:283-288.
  Liuming H, H. Weiping, D. Jiancai, L. Qingqing, G. Feng, Z. Jinge, and H. Tao. December 2010. Nutrient removal in wetlands with different macrophyte structures in eastern Lake Taihu, China. Ecological Engineering Vol 36:12 pp 1725-1732.