Lurking in the Background: A Review of the Components of Leakage and Intervention Strategies

Presented by:
Tory Wagoner, P.E./P.L.S
Cavanaugh & Associates, P.A.
Four Pillars of Managing Leakage

- **Active Leakage Control**
- **Existing Real Losses**
- **Economic Level**
- **Unavoidable Real Losses**
- **Speed & Quality of Repairs**
- **Pressure Management**
- **Maintenance Rehab Repair**

As each component receives more or less attention, the losses will increase or decrease.

Source: AWWA Water Loss Control Committee

Background Leakage
- Unreported and un-detectable using traditional acoustic equipment.
 - Tools:
 - Pressure Reduction
 - Main and service replacement
 - Reduction in the number of joints and fittings.

Unreported Leakage
- Often does not surface but is detectable using traditional acoustic equipment.
 - Tools:
 - Pressure Reduction
 - Main and service replacement
 - Reduction in the number of joints and fittings.
 - Proactive Leak Detection

Reported Leakage
- Often surfaces and is reported by public or utility workers.
 - Tools:
 - Pressure Reduction
 - Main and service replacement
 - Optimized repair time
Real Loss Component Analysis

Where the total cost is at a minimum

Economic Level of Loss

District Metered Areas

Background Leakage
Unreported and un-detectable using traditional acoustic equipment.

Tools:
- Pressure Reduction
- Main and service replacement
- Reduction in the number of joints and fittings

Unreported Leakage
Often does not surface but is detectable using traditional acoustic equipment.

Tools:
- Pressure Reduction
- Main and service replacement
- Reduction in the number of joints and fittings
- Proactive Leak Detection

Reported Leakage
Often surfaces and is reported by public or utility workers.

Tools:
- Pressure Reduction
- Main and service replacement
- Optimized repair time
Active Leakage Control Strategy

- Assessment
- Localization
- Pinpoint
- Confirm
- Repair
Active Leakage Control Strategy

1. Assessment
 - Locate
 - Pinpoint
 - Confirm
 - Repair

Reported LEAK DURATION
- CUSTOMER SIDE: 299,000 Gallons, 6500 Galls./day, 46 Days
- UTILITY SIDE: 104,000 Gallons, 6500 Galls./day, 16 Days

FLOW RATE AT A GIVEN PRESSURE
District Metered Areas

Intake and treatment works
Bulk meter into supply zone
District meter measures flow into districts e.g. 1000-3000 properties
Sub district meter measures flow into smaller area e.g. 1000 properties
River
Source meter measures total output
Mains
Closed valve
Meter

GPM Flow
Minimum Night Flow
*150 GPM
Unaccounted Leakage Rate for the DMA

District Metered Areas

Main Break

GPM Flow

Courtesy Water & Wastewater Authority of Wilson County, Tennessee
HIGH PRESSURE

Source: George Kunkel Jr.

CITY OF ASHEVILLE – CASE STUDY
Which zone do we select?

Zone Selection Criteria:

- Are there any continuously pumped zones?
 - Potentially lower capital implementation costs
 - Higher level of potential energy savings

- Pressure Logging
 - Average Zone Pressure & Critical Pressure logs identify if there is pressure that can be reduced

- Break Frequencies
 - Pressure Dependent Main line breaks
 - Pressure Dependent Service line breaks
 - Comparison to “Unavoidable” Levels

Zone #1 - Haw Creek

Operating Conditions:

- Continuously Pumped – (4) 30 HP Pumps
- Controlled by discharge pressure
- Lower Sondley PRV – Backup supply
Pressure Logs:

Zone Baseline:
- Low Reported Break Frequencies
- No Active Leak Detection
- Excess Pressure at Critical Points

Field Testing:
- Goal – How much background leakage?
- Initial flow/pressure/consumption
- Active Leak Detection #1
- Active Leak Detection #2
- Additional flow/pressure/consumption
Results:

<table>
<thead>
<tr>
<th>Survey</th>
<th>Leaks Found/Repaired</th>
<th>Leakage Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>6</td>
<td>24 gpm (estimate of 4 gpm/leak)</td>
</tr>
<tr>
<td>#2</td>
<td>3</td>
<td>12 gpm (estimate of 4 gpm/leak)</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>36 gpm (estimate of 4 gpm/leak)</td>
</tr>
</tbody>
</table>

Pre/Post Leak Detection & Repair Flow Logs:
Business Case: Haw Creek Pump Zone 2014

Infrastructure Data

Average pressure when supplied (PSI)	196
Mains length (miles)	11
No. of connections	569
Hours of supply per day (h)	24
Effective average pressure in 24 h	196

Annual volume and average flow

NFRL 24 (CARL)	196
Unassailable annual real loss (UARL)	0
Effective miles	0

Performance Indicators

| Current annual real lost | 0 |
| Unassailable annual real lost | 0 |

Business case

Corrected CARL MGY	196
Production cost $/MG	274.29
Savings per year $ (1)	2,052.69
Power for booster pumping $/MG	700.00
Savings per year $ (2)	5,238.54
Mains replacement cost $/mile	359,040.00
Savings per year $(3)	1,265.62
Deferral for five years $ (4)	17,772.48
Probability of one catastrophic event per year	4%
Avoidance of catastrophic event value per year $ (5)	2,327.50
Total saving per year $	28,656.83

Lessons Learned:

- Hydraulically, existing set-ups leave limited opportunity for reduction of pressure in consecutive pumped zones;
- Detailed assessment of boundary integrity, especially when evaluating parts of zones, is very important;
- Not every zone will have a business case, even if the pressures are really high;
Questions?

Contact: Tory Wagoner, P.E.

1-877-557-8923
www.cavanauhgsolutions.com