NC STATE UNIVER

NC STATE UNIVERSITY

Assessing the Role of Turbulent Mixing on Phytoplankton Dynamics in Piedmont Reservoirs

Tarek N. Aziz, Daniel Obenour, Jeremy Smithheart Yue Han, Alexandre Mangot, Robyn Smyth NC State University Department of Civil, Construction, and Environmental Engineering

Harmful Algal Blooms – why do we care?

- Beneficial uses of reservoir
- Taste and odor in drinking water
- Toxin production
- Disinfection byproducts

2 current sites (yellow) and 2 thermistors (white). Summer sites were taken until August 2016 (grey)

8 sites (yellow) and 2 thermistors (white)

4 sites (yellow) and 2 thermistors (white)

Field Campaign

Data Set	2015	2016
Jordan Lake	\checkmark	\checkmark
University Lake		\checkmark
High Point City Lake		\checkmark
Monthly Sonde Data (Temperature, LDO, pH, Conductivity, Chlorophyll Fluorescence, and Phycocyanin Fluorescence)	\checkmark	\checkmark
Hourly Temperature Logs (Thermistor String)	\checkmark	\checkmark
SCAMP (turbulent diffusion measurement)	\checkmark	\checkmark
Dye Tests (turbulent diffusion measurement)	\checkmark	\checkmark
Monthly Assemblage Grab Samples		\checkmark
Water Quality Samples		\checkmark

Additional Sampling

BAE Environmental Analysis Lab and CAAE Lab

- Chlorophyll a
- Total Density
- Total Keldahl Nitrogen
- Nitrate-Nitrite
- Ammonia
- Total Phosphorous
- Orthophosphate

In Situ Measurements (Hydrolabs Sonde)

• Chl a, phycocyanin, DO, pH, Temp

Couple to Ongoing Monitoring Efforts

• Municipalities, DWR, EPA STORET

On the horizon

- Continued monitoring
- Additional tweaking of mechanistic model
- Deeper analysis with statistical modelling
- Experimental configuration to study water column dynamics...

NC STATE UNIVERSITY

Questions?

Tarek N.Aziz tnaziz@ncsu.edu

Dye Test Model $\frac{\partial C}{\partial t} = E * \frac{\partial^2 C}{\partial z^2}$ • E = Diffusivity (m²/s) • C = Concentration of Rhodamine WT Dye (g/m³) • t = time (sec) ; z = depth (m) $C_i^{n+1} = C_i^n + \frac{E * \Delta t}{\Delta z^2} (C_{i+1}^n - 2C_i^n + C_i^n)$ • Forward-time, center-space finite differencing model for time "n" at depth "i"

