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Introduction

Dissolved Organic Nitrogen (DON)

What we know: What we don’t know:

1. Increasein DON in 1. If natural
aguatic systems (tevoetal, phytoplankton and
2012; Pellerin et al., 2006) bacterial assem blages

2. There are ample use DON in-situ
sources of DON in 2. What fraction of DON

watersheds (coble et al., 2014;
Pellerin et al., 2006)

3. Phytoplankton and

is available to
phytoplankton in-situ

bacterial assemblages 3. Seasonal and temporal
can use DON as a distribution of broad
nutrient source (inetal, classes of DON in

2015; Mesfioui et al., 2012; Bronk et al., estuarine SyStemS

2007)

Introduction

EEM-PARAFAC Techniqgue

* Difficult to measure ON
using traditional methods =

* Bulk measurements ‘

* Single molecule analysis

* Optical techniques
* Fluorescence

* Excitation emission
matrices (EEMs)

* Parallel Factor Analysis
(PARAFAC)

* Differentiate between
broad classes of organic
matter

Stedmon et al., 2003; Ohno and Bro, 2006; Osburn et al., 2012
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Introduction

Study Questions

1. What is the extent of
transport and fate of DON
sources in the Neuse River
Estuary (NRE)?

2. What is the bio-reactivity of
DON along the freshwater-
estuarine continuum?

Introduction

Neuse River Estuary (NRE)

* Collected EEM
samples from Station
0to 180

e July 20, 2015 to July
18, 2016
* Collected monthly to
twice weekly

* Collected both
surface and bottom
samples

* Coordinated with
ModMon

Paerl et al., 2014
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FluorMod

FluorMod

* Osburn et al., 2016 developed an additive mixing model

of watershed DON sources

* Does not include autochthonous sources
* Use to identify and track the fate of terrestrial DON in

the NRE
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PARAFAC Model

FluorMod as a PARAFAC model

* FluorMod is a mixing model

e Use FluorMod as a PARAFAC model fitted to the
NRE samples

* Track identified components through the estuary
* Contains indentified terrestrial (allochthonous) and
biological (autochthonous) components
* Are there changes in the identified ‘autochthonous’
sources that indicate utilization or production of
DON components by phytoplankton and bacterial
assemblages?

Osburn et al., 2016
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Slide 10

c2 closburn, 3/13/2017

c3 C1 is tricky no real idea yet
closburn, 3/13/2017

c4 C7 is not only an Effluent signal but was enriched. | think overall | would not try to interpret these

Components as discrete source signals. Or rather show that a component like C7 is "enriched in Effluent”
closburn, 3/13/2017



PARAFAC Model

Estuarine mixing processes
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Slide 12

c5 | am unclear about your last point - you applied the FluorMod PARAFAC model to your estuarine EEMs
but not applying FluorMod itself? | think you do yourself a disservice if you cannot identify specific
components. Why would C1 get higher across the salinity gradient?
closburn, 3/13/2017

c6 Also it would not be surprising that FluorMod worked worse as the river signal was diluted. FluorMod

had no phytoplankton source remember.
closburn, 3/13/2017



Preliminary Conclusions
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J Conclusions

* Fluorescence overwhelmed by terrestrial components
* Difficult to identify and track biological components
* Patterns down estuary mainly due to mixing and
dilution processes
* But some fluorescence components are dominated by
estuarine processes
* The challenge: linking these components to
phytoplankton dynamics
* Multiple processes occurring simultaneously

* Still in the process of analyzing data
* Multivariate analyses
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Slide 13

c7 Why would C3/C6 (latter urban run off) show an incrase with Chla?
closburn, 3/13/2017

Slide 14

c8 You must say taht FluorMod is a source model only - has no transformation component. Very
reasonable that biogeochemistry has wiped out source siganls and they converge into generic humic
substances.

closburn, 3/13/2017
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Appendix

July 18, 2016
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July 18, 2016
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Slide 20

cl Have an idea for what this residual signal is...
closburn, 3/13/2017



FluorMod Residuals
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PARAFAC Model Development

* Generated a 3-component PARAFAC model

* Based on all DOM samples collected from July 2015
to July 2016
* Included both surface and bottom samples
* All stations from riverine to coastal end-member
* Total of 471 samples

* Model split half validated
* 3 component model developed

PARAFAC Model: NRE-DOM

C3

300 350 400 450
Ex. (nm)

250 300 350 400 450
Ex. (nm)

DOM Ao (nm) A, (hm) Matchesto Assignment Corresponding to previous studies
Component OpenFluor
Cc1 <240, 452 14 Humic, fulvic-acid like; terrestrially derived; combination of A and
340 C peaks
Cc2 <240 406 6 Microbial, humic-like; potentially from phytoplankton exudates;
eutrophic estuaries; similar to M-peak
c3 270, 205 | 496 4 Humic-like; terrestrially derived

3/21/2017
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Modeling Residual

* Fit a PARAFAC model to the sample residuals

* Capture what isn’t being modeled in the original
PARAFAC model

* Developed a 6-component model

* NOT split half validated — take results with a grain
of salt...

Residual PARAFAC Model
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