

Separation of Ammonia and Phosphate Minerals from Wastewater using Gas-Permeable Membranes

WRRI Water Sustainability Through Nanotechnology Symposium March 15, 2017 – Raleigh, NC

Matias Vanotti

Collaborators: Patrick Dube, Ariel Szogi United States Department of Agriculture, ARS Florence, SC

Presentation outline

Recent development at USDA of systems and methods to recover N, P and value-added materials from wastes

1. Improved ammonia recovery from liquid with gasmembranes

>2. Simultaneous N and P recovery with membranes

➤3. Recovery of ammonia without chemicals

Why recover N?

Escalating U.S. Fertilizer Costs

Why recover N?

Escalating U.S. Fertilizer Costs

Why recover phosphorus?

Cordell, D., et al., Chemosphere 84:747-758

Animal Manure – Surplus N & P, Ammonia emissions in areas of concentrated animal production

North Carolina produces approximately 750 million chickens, 40 million turkeys, 3.5 billion table eggs, and 19 million hogs per year.

Surplus Phosphorus

Animal Manure - Excess P

SURPLUS N

Percent of Agronomic Crop and Forage Nitrogen Needs Supplied by Recoverable Plant Available Manure Nitrogen at the County Level in North Carolina

Ammonia Emissions

Fig. 1. County scale NH_3 emission density for North Carolina along with measurement sites. Livestock activity data represent 2000 levels. All other activity data represent 1996 levels.

Walker et al., Atmos. Environ. 38:1235-1246

Value Chain without Solution

The Technology

What do you do?

• Our technology simultaneously removes and recovers both nitrogen and phosphorus from manures and wastewaters.

Why do you do it?

 This creates value added products from wastes and helps society with a cleaner environment.
 Phosphorus

Value Chain with Solution

Ecosystem Map With Solution

How your product interacts with the world once it is in the hands of the customer

New technology: Recovery of Ammonia from Manure

□ Ammonia is separated using gas-permeable membranes

Applications include <u>liquid</u> manures and <u>air</u> in livestock houses

Product is liquid fertilizer with 50,000 to 100,000 ppm N

Recovery and Concentration of Ammonia

Ammonia permeation through microporous, hydrophobic membranes

OReduced ammonia emissions from livestock operations

oProduct is ammonia solution with > 50,000 ppm N

Gas-permeable membranes

• **Medical uses:** Used in membrane oxygenators to imitate the function of the lungs in cardiopulmonary bypass, to add oxygen to, and to remove carbon dioxide from the blood (Gaylor, 1988).

Clothing & shoe industries: Used to provide waterproof and <u>breathable</u> fabrics in sportswear and footware (i.e. GORE-TEX® Products, 1968)

For this research we used gas-permeable membranes made of <u>expanded</u> polytetrafluoroethylene (ePTFE)

PTFE is stretched to form a strong, porous material

Gas Permeable Membrane Microscopic structure (SEM)

Manufacture of Gas Permeable Membrane

Recovery of Ammonia from Liquid Manure with Gas-permeable Membranes

Technology captures ammonia emissions
 Produces liquid fertilizer with > 50,000 ppm nitrogen

Improvement of Anaerobic Digestion

WHAT IS INTENDED TO DO?

- Removal of ammonia gas from the liquid manures before it escapes into the air.
- Nitrogen is recovered from liquid manures in a concentrated, purified form

Concept of Ammonia Capture from Wastewater using Gas Permeable Membrane

Tubular or Flat Membrane Manifold Submerged in the Wastewater

Gas-permeable membrane system: The ammonia gas (NH3) passes through

Does it work?

Ammonia removal from animal waste using gas permeable membranes

CONFINED LIVESTOCK RAW WASTE pН MEMBRANE MANIFOLD SYSTEM FLOAT RECOVERED AMMONIA

Retrofit of manure storage units to harvest the ammonia

Anaerobic Livestock Wastewater Lagoon with Ammonia Recovery System

Recovery and <u>Concentration</u> of Ammonia from Liquid Swine Manure using Gas Membranes (10 batches using same stripping solution)

Recovered NH₄-N was concentrated to 53,000 ppm

Microporous gas-permeable membrane : In tests, the soluble carbon did not pass through Strip solution **Synthetic** Wastewater (water) Glucose H₂O (500 ppm COD) 0 ppm COD **KHP** (1000 ppm COD) Gas-filled pore **Hydrophobic** Polymer (e-PTFE)

Design Parameter: Effect of wastewater pH:

	Initial Source pH = 8.3			Initial Source pH = 10.0			
	NH ₄ -N			$\overline{NH_4}-N$			
	Mass NH ₄ -N	Recovery from	pH of	Mass NH ₄ -N	Recovery		
Time	in Trap	Source	Trap	in Trap	from Source	pH of Trap	
(hours)	(mg)	(%)		(mg)	(%)		
0	0	0	1.08	0	0	1.08	
1	0.86	1.0	1.11	7.82	8.7	0.99	
2	2.44	2.7	0.98	26.51	29.4	1.16	
3	3.72	4.1	0.99	38.60	42.9	1.28	
4	4.77	5.3	1.1	48.86	54.3	1.6	
5	5.39	6.0	1.0	56.40	62.7	1.8	

N Recovery was ~ 1.2 % per hour at pH 8.3 and 13% per hour at pH 10 (increased 10 times)

Gas-permeable membrane used for separation of free ammonia (NH₃)

Design Parameter: Effect of waste strength

Swine manure characteristics

Manure strength	Swine Farm Type	рН	NH ₄ -N mg/l	TKN mg/L	EC (mS)		TS g/L	VS g/L
Low	Piglet	8.64	1065	1345	8.470	4519	4.89	2.58
Medium	Farrow-finish w/ separation	7.57	1680	2743	14.080	24405	17.41	10.33
High	Finishing	7.52	2285	3699	16.980	34081	29.87	20.13

Ammonia recovery from livestock manure using gas-permeable membrane module and concentrator tank (Closed loop system).

Experimental device for ammonia capture from manure using gaspermeable membranes (closed loop).

Process pH adjusted with alkali (7.7 to 9)

Removal of ammonia in the manures and recovery in the acid tank

Ammonia recovery rate increases with manure strength

Manure strength	Initial NH4 mg N/L	NH4 removed %	NH4 recovery %	NH4 recovery rate (mg/L/d)
low	1385	94	87	74
medium	2184	90	90	92
high	2971	88	90	194

M.C. Garcia and M.B. Vanotti, Waste Management 2014 (in press)

Ammonia was removed

but carbon (volatile solids) was not removed

Technology can be combined with <u>anaerobic digestion</u> to recover both the ammonia and the energy from manure.

Ammonia Recovery System with Anaerobic Digestion

Zarebska et al. (2015) Ammonium fertilizers production from manure: A critical review.

The gas-permeable membrane method had very low energy demand

Energy consumption of ammonia recovery methods (manure)

NF= nanofiltration
RO = reverse osmosis
GPM = gas permeable memb.
AS = air stripping
IE = ion exchange/ zeolites
CP = Chemical precipitation

The gas-permeable membrane method (MD) had high chemical demand (NaOH to increase pH)

Chemical cost (\$/m3 feed) 14 12 10 8 6 4 2 0 GPM NF AS IE CP RO

NF= nanofiltration RO = reverse osmosis GPM = gas permeable memb. AS = air stripping IE = ion exchange/ zeolites CP = Chemical precipitation

Zarebska et al. (2015) Ammonium fertilizers production from manure: A critical review.

Design Parameter: Effect of aeration

Two ways can be used to increase manure pH and N recovery efficiency by the gas-permeable membrane system:

1. Add alkali chemicals (OH⁻)

2. Low-rate aeration

 $HCO_{3}^{-} + air \rightarrow OH^{-} + CO_{2}$ $NH_{4}^{+} + OH^{-} \rightarrow NH_{3} + H_{2}O$

Design Parameter: Effect of aeration Two ways can be used to increase manure pH and N recovery efficiency by the gas-permeable membrane system:

1. Add alkali chemicals (OH) 2. Low-rate aeration $HCO_3^- + air \rightarrow OH^- + CO_2$ $NH_4^+ + OH^- \rightarrow NH_3 + H_2O$

- Aeration increases manure pH about 1 unit
- The aeration rate must be low to inhibit nitrification
- Nitrification inhibitor can be used (< 10 ppm)</p>

Vanotti and Szogi. US 9,005,333

Recovery of Ammonia from Liquid Manure with Gas-permeable Membranes

Technology recovers ammonia from liquid manure
 Produces liquid fertilizer with > 50,000 ppm nitrogen
 US Patent in 2015: "Systems and Methods for Reducing Ammonia Emissions from Liquid Effluents and for Recovering the Ammonia" (US 9,005,333, Vanotti,M.B., and Szogi,A.A)

Experimental device for ammonia capture from manure using gaspermeable membranes (closed loop).

N recovery: Effect of low-rate aeration Covered lagoon effluent, North Carolina

Liquid with 2,100 mg/L NH4-N

Changes in ammonia concentration in manure and the N recovery tank

Covered anaerobic lagoon effluent, NC

Mass Balances of the Recovery of Ammonia - anaerobic digester effluent

	Treatment Time	Initial NH₄⁺ in Manure	Remaining NH₄⁺ in Manure	NH₄ ⁺ removed from Manure	NH₄ ⁺ recovered in acidic solution	NH₄ ⁺ removal efficiency	NH₄ ⁺ recovery efficiency	NH₄ ⁺ Volatilized in air
	(days)		mg N				%	
Aerated	5	3133 (151)	96 (29)	3037	2979 (2)	97	98	2
Non Aerated	25	3157 (132)	71 (19)	3086	2936 (40)	98	95	5
		ELSEV	Contents lists available at ScienceDirect Waste Management journal homepage: www.elsevier.com/locate/wasman					Master Management

Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology

P.J. Dube^{a,*}, M.B. Vanotti^a, A.A. Szogi^a, M.C. García-González^b

^a United States Department of Agriculture, Agricultural Research Service, Coastal Plains Soil, Water and Plant Research Center, 2611 W. Lucas St, Florence, SC 29501, USA ^b Agriculture Technological Institute of Castilla and Leon (ITACyL), Valladolid, Spain

ARTICLE INFO ARSTRACT

Significant cost reductions can be achieved with new concepts and research

Operational cost of NH₃ recovery using gas-permeable membranes (\$/4000 pigs/year)

Changes in pH and alkalinity of manure during N recovery process

Covered anaerobic lagoon effluent, NC

Key finding

• The process removes ammonia and alkalinity and increases pH.

• These are <u>ideal conditions</u> for phosphorus precipitation and recovery

Recovery of ammonia and phosphorus from animal manure

Configuration 1

Configuration 2

Influent P concentration: 150-200 mg/L Influent N concentration: 1500-2000 mg/L US Pat. Appl. 62/169,387 (USDA 6/1/2015) For Mg phosphates, two potential forms that can precipitate in liquid systems that contain Mg²⁺–NH₄⁺–PO₄^{3–} and a high Mg/Ca ratio are struvite and newberyite (Boistelle et al., 1983; Abbona et al., 1988; Muster et al., 2013).

Struvite Mg²⁺ + H₂PO₄⁻ + NH₃ \rightarrow MgNH₄PO₄ + H⁺

Newberyite Mg²⁺ + H₂PO₄⁻ \rightarrow MgHPO₄ + H⁺

Nitrogen and Phosphorus Recovery Configuration 2: MgCl2 added to N reactor (no alkali added)

Influent P = 446 mg/LInfluent pH = 8.4

pH after aeration = 9.5 N recovery = 91% P recovery = 100%

Configuration 2 with MgCl2 added (without NaOH)

	Concentrations		MASS BALANCE					
Nutrient	Influent Effluent Concentration		Initial Manure	Recovered Solid Recovered by Membrane		Effluent	Total Recovery	
	mg/L		Percentages					
N	2354	69.2	100%	7.7%	83.1%	2.9%	90.5%	
Ρ	446	23.5	100%	104.3%	0%	5.3%	104.3%	

Configuration 2 with MgCl2 added (without NaOH)

	Concentrations		MASS BALANCE					
Nutrient	Influent Effluent Concentration		Initial Manure			Effluent	Total Recovery	
	mg/L		Percentages					
N	2354	69.2	100%	7.7%	83.1%	2.9%	90.5%	
Ρ	446	23.5	100%	104.3%	0%	5.3%	104.3%	

Composition of Recovered Solid								
N P_2O_5 Mg Ca K Plant Available (Citrate soluble)								
Percentages, %								
4.5	26.4	10.0	2.0	1.7	99.00			
Struvite – 5.7 N \cdot 29 P $_{\circ}$ \circ 10 Ma								

IVIG

Nitrogen and Phosphorus Recovery Configuration 1: MgCl2 added after N removal (no alkali added)

Influent P = 446 mg/LInfluent pH = 8.4

pH effluent after N recovery = 9.3 P recovery = 93.2%

US Pat. Appl. 62/169,387 (USDA 6/1/2015)

Recovered Phosphates (Configuration 1)

- P recovered as High-Grade Magnesium Phosphate
- 99.7% plant available (standard citrate test)

Chemical Composition

Constituent	Percentage
P_2O_5	46.4%
Magnesium	17.1%
Calcium	0.4 %
Potassium	1.7 %
Nitrogen	1.8 %

Newberyite (MgHPO4.3H2O) $41\% P_2O_5$ and 14% Mg

Triple superphosphate = 46% P₂O₅; Rock phosphate = 27-36% P2O5

Configuration 1 with Municipal Side Stream Wastewater (after AD of sludges)

	Concentrations		MASS BALANCE				
Nutrient	Influent Effluent Concentration		Initial Manure	Recovered Solid Membrane		Effluent	Total Recovery
	mg/L		Percentages				
N	731	123	100%	2.4%	90.5%	16.7%	92.3%
Ρ	147	6	100%	79.2%	0%	4.1%	79.2%

Results obtained were consistent using swine and municipal side-stream digester effluents

Composition similar to rare bio-mineral NEWBERYITE that is found in guano deposits

Composition of Recovered Phosphate Minerals (Swine Effluent)

Ν	P ₂ O ₅	Mg	Са	к	Plant Available P			
Percentages, %								
1.8	46.4	17.1	0.4	1.8	99.7			

Conclusions

- Phosphorus recovery was combined with ammonia recovery using gas-permeable membranes
- Aeration destroyed carbonates, increased pH, and enhanced N capture
- The process provided approximately 100% phosphorus recovery efficiencies
- With substantial ammonia capture, the recovered P contained very-high phosphate grade (biomineral newberyite)

Our publications are available online. Click here to access the PDF files.

https://www.ars.usda.gov/southeast-area/florence-sc/coastal-plain-soil-water-andplant-conservation-research/