

NC STATE UNIVERSITY Changes in Regulations New stormwater rules (15A NCAC 02H) in effect 01/01/2017 - Minimum Design Criteria (MDC) for SCMs codified in new rules - https://deq.nc.gov/about/divisions/energy-mineralland-resources/energy-mineral-land-rules/stormwaterprogram-rules - Available draft version of revised Stormwater Design Manual Collaboration between DEQ and Nonpoint Source Planning Programs to update effluent concentrations for **SCMs** Bie&Ag ttps://stormwater.bae.ncsu.edu/

3/21/2017

	SCM Categories	
	Primary SCMs	Secondary SCMs
	Wet Pond	DIS
	Stormwater Wetland	LS-FS
	Infiltration System	Pollutant Removal Swale
	Bioretention Cell	Dry Pond
	Permeable Pavement	
	Rainwater Harvesting	
	Green Roof	
From Ar	nnette Lucas of NC DEO	N ÃL
TIOITA		

NC STATE U	NIVERSITY			
P	Prima	ry versus Se	condary SCM	S
	List & Uses	Primary SCMs	Secondary SCMs	
	List	Bioretention Cell Infiltration System Permeable Pavement Wet Pond ¹ Stormwater Wetland ¹ Sand Filter Rainwater Harvesting	 Green Roof Disconnected Impervious Surface Level Spreader-Filter Strip Pollutant removal Swale Dry Pond 	
https://stormwa	Uses	 As a stand-alone SCM to treat a new development site (when 100% sized). As a retrofit. 	 In series with a primary SCM to reduce the volume of runoff and thus reduce the size of the primary SCM. In series with a primary SCM to provide pretreatment. In series with a primary SCM as a hydraulic device to slowly 'Teed' the stormwater runoff to the primary SCM, to reduce the size of the primary SCM. In series with another secondary SCM to treat the design storm in a manner that meets or exceeds performance standard. As a retrofit. 	Bie&Ag

3/21/2017

3/21/2017

NC	STATE UNIVERSITY		
	SCMs (designed per the MDC unless otherwise specified)	% of annual runoff treated if 100% size	d
	Infiltration Permeable Pavement Wet Pond Stormwater Wetland Dry Pond	84%	
(Bioretention	94%	
	Sand Filter (open or closed) StormFilter	90%	
	LS-FS DIS Pollutant Removal Swale	90%	
	Rainwater Harvesting	85%	
https	://stormwater.bae.ncsu.edu/	From Annette Lucas of NC DEQ	ie&Ag

NC STATE UNIVERSITY
Bioretention
 10 NCSU studies: Charlotte, Graham (x2), Knightdale (x2), Louisburg (x2), Nashville (x2), Rocky Mount, NC For each site calculated average EMCs Used average of mean EMCs TN: with and without IWS TP: all studies
https://stormwater.bae.ncsu.edu/

N	IC STATE UNIVERSITY			% Annual	% Treated R	unoff to Fates	EMC _{effuent} (mg/	L)		
		SCM	Role	Treated if 100% Sized	HSG E	T&I Effluent	TN TI	•		
		Bioretention per MDC	Primary	94	A B C	90 10 71 29 36 64	0.58 0.1	2		
			% Ar Ru	nnual noff	% Treat	ted Runoff	to Fates		EMCefflue	_{nt} (mg/L)
	SCM	Role	Trea 10 Siz	ted if 0% zed	HSG	ET&I	Effluent		TN	ТР
					A	90	10			
	Bioretention per MDC	Primary	9	94	4	<u>с</u>	36	64	0.58 0.12	0.12
						D	14	86		
	Bioretention per MDC				A	51	49			
	(retrofits and special	Primary	g	4	C	11	89		1.20	0.12
	cases only)				D	9	91			
	Bioretention with design variants per Hyper Tool	Primary	Tool (Output		Tool Outpu	ıt	0	.58 / 1.20	0.12
		Wel Pont per MDC	Primary	84	A B C D	25 75 20 80 15 85 10 90	122 0.1	5		
		Wel Road per MOC With 2:5% covered by FWI per Fig. 1	Primary	84	A B C D	26 75 20 80 15 85 10 80	0.85 0.0	9		
ht	tps://stormwater.bae.ncsu	Stormwater wetland per MDC	Primary	84	A B C D	40 60 35 65 30 70 25 75	1.12 0.1	ß		Bie&Ag

NC STATE UNIVERSITY Annual Runoff Treated • Routed using depth of water in SCM rather than volume on hourly basis • Assumed between hours 0 and 1 drawdown negligible (ponded water = 1 foot) and all of runoff entered SCM • Inflow: $Q = \frac{(P - 0.2S)^2}{P + 0.8S} * 3630 * A$

NC STATE UNIVERSITY	
Annual Runoff Treated	
Outflow:	
$h_{out} = \frac{\left(0.6 * A * \sqrt{2gh_o}\right) * \Delta t}{SA_{SCM}} * C_o, h_1 > \frac{l}{2}$	
$h_{out} = \frac{(3.33*(l - 0.2h_w)*h_w^{1.5})*\Delta t}{SA_{SCM}} * C_w, h_1 \leq$	$\frac{l}{2}$
Where:	
h _{out} = Outflow depth	
h_o = Orifice driving head at beginning of Δt	
$n_1 = Depth of water in SCM at beginning of \Delta t$	
$n_w = \text{weir driving nead at beginning of }\Delta t$	
SA = Surface area of SCM	
SA _{SCM} – Surface area of SCIVI	ie&Ag

Bio& Ad

NC S	TATE UNIVERSITY								
			Infil	trat	ion				
	Credit Table	e .					×.		
	SCM	Role	% Annual Runoff	% Treat	ed Runoff	to Fates	EMC _{effluent} (mg/L)		
			100% Sized	HSG	ET&I	Effluent	TN	TP	
				A	100	0	O		
	Infiltration per MDC	Primary	84	C	100	0		0	
				D	100	0			
•	 Excellent p removal of 	orotectio bacteria	n of strear	n bank	ks, stre	eam terr	peratur	e, and	

2011	Bole	% Annual Runoff	% Treat	ed Runoff	to Fates	EMCefflue	mt (mg/L)	
SCM	Kolo	Treated if 100% Sized	HSG	ET&I	Effluent	TN	ТР	
Dormoohlo			А	100	0		o	
navement	Primary	84	B	100	0	0		
(infiltration) per MDC	1 minary	04	С	100	0			
(D	NA	NA			
Permeable			A	10	90			
pavement	Primary	84	B	5	95	1.08	0.05	
(detention, unlined)			C	0	100			
				0	100		0.05	
Permeable					100			
(detention_lined) per	Primary	84	C	0	100	1.08		
MDC			D	0	100	-		
Permeable pavement with design variants per the HyPerMod	Primary	Tool Output	Tool Output		t	1.08	0.05	

Bie&Ag

NC STATE UNIVERSITY

Wet Pond and FWI- Calculation

• For each site: $\overline{x_i} = \frac{1}{n} \sum_{i=1}^{n} C_i$

Where:

 $\overline{x_i}$ = Average effluent concentration for site (mg/L)

n = Number of samples from site

 C_i = Effluent concentration from storm event i (mg/L)

ttps://stormwater.bae.ncsu.edu/

Bie&Ag

	Dele	% Annual Runoff	% Treat	ed Runoff	to Fates	EMCefflue	_{int} (mg/L)
SCM	Role	Treated if 100% Sized	HSG	ET&I	Effluent	TN	ТР
Vet Pond per MDC	Primary	84	A B C D	25 20 15 10	75 80 85 90	1.22	0.15
Vet Pond per MDC th ≥ 5% covered by FWI per Fig. 1	Primary	84	A B C D	25 20 15 10	75 80 85 80	0.85	0.09
air protectio	on of stre	eam banks	and re	moval	of bact	eria	

N	STATE UNIVERSITY							
			San	d Fi	lter	,		
(Credit Table							
	SCM	Pole	% Annual Runoff	% of Trea	ated Runo Fate	ff to Each	EMCefflue	_{ent} (mg/L)
	SCM	Ruie	Treated if 100% Sized	HSG	ET&I	Effluent	TN	ТР
	Sand Filter (open) per MDC	Primary	91	A B C D	10 5 0 0	90 95 100 100	1.33	0.12
	Sand Filter (closed) per MDC	Primary	91	A B C D	0 0 0 0	100 100 100 100	1.33	0.12
•	Poor protect Fair protectio Good remov	ion of sti on of stre al of bac	ream bank eam tempe cteria	s erature				
http	s://stormwater.bae.ncsu.e	edu/						Bie&A

N	C STATE UNIVERSITY									
	StormFilter									
Γ	Credit Table									
	SCM	Role	% Annual Runoff	% of Trea	ated Runol Fate	ff to Each	EMC _{effilient} (mg/L)			
			100% Sized	HSG	ET&I	Effluent	TN	TP		
	StormFilter per MDC with PhosphoSorb media™	Primary	91	A B C D	0 0 0 0	100 100 100 100	0.48	0.03		
•	Poor protect	ion of str on of stre	eam banks am tempe	ature a	and rer	noval c	f bacter	ia		
http	s://stormwater.bae.ncsu.ed	u/						Bie&Ag		

Rainwater Harvesting Credit Table % Annual Runoff % of Treated Runoff to Each Fate EMCertuent (mg/L) SCM Role % Annual Runoff % of Treated Runoff to Each Fate EMCertuent (mg/L)
Scm Role % Annual Runoff Fate EMCertituent (mg/L)
SCM Role Role Runoff to Each EMCernivent (mg/L)
100% Sized HSG ET&I Effluent TN TP
Rainwater Harvesting per MDC Primary 85 A Custom based on water usage Custom based on

N	C STATE UNIVERSITY							
			Gree	n R	oof			
	Credit Table]
			% Annual Runoff	% of Trea	ated Runot Fate	ff to Each	EMCefflue	_{nt} (mg/L)
	SCM	Role	Treated when sized for Design Storm	HSG	ET&I	Effluent	TN	ТР
	Green Roof per MDC	Secondary	100	N/A	60	40	2.44	0.76
•	Good protec removal of b	tion of st acteria	ream bank	s, strea	am tem	peratu	re, and	
htt	ps://stormwater.bae.ncsu.e	du/						Bie&Ag

it rable		% Annual Bunoff	% of Trea	ated Runo	ff to Each	EMCefflue	nt (mg/L)
SCM	Role	Treated if 100% Sized	HSG	ET&I	Effluent	TN	TP
IS per MDC	Secondary	90	A B C	65 50 40	35 50 60	2.44	0.76

redit l'able		% Annual Runoff	% of Trea	ated Runo	ff to Each	EMCefflue	mt (mg/L
SCM	Role	Treated if 100% Sized	HSG	ET&I	Effluent	TN	ТР
Pollutant removal swale with dry conditions	Secondary	90	A B C D	25 15 5 0	75 85 95 100	1.10	0.14
Pollutant removal swale with wet	Secondary	90	A B C	40 30 20	60 70 80	0.82	0.11

STATE UNIVERSITY							
	Sto	rmwat	ter \	Net	land		
Credit Table							
SCM	Role	% Annual Runoff	% Treat	ed Runoff	to Fates	EMCefflue	nt (mg/L)
SCIII	11010	Treated if 100% Sized	HSG	ET&I	Effluent	TN	ТР
Stormwater wetland per MDC	Primary	84	A B C D	40 35 30 25	60 65 70 75	1.12	0.18
Good protect Fair protectio	tion of st on of stre	ream bank am tempe	s and r ature	emova	al of bad	cteria	
://stormwater.bae.ncsu.ed	du/						DIGO

SCM	Role -	% Annual Runoff	% of Tre	ated Runo Fate	ff to Each	EMCeffluer	nt (mg/L)
	Role	Treated if 100% Sized	HSG	ET&I	Effluent	TN	ТР
LS-FS per MDC	Secondary	90	A B C D	60 40 25 15	40 60 75 85	1.04	0.19
S-FS with Virophos sand added to the filter strip	Secondary	90	A B C D	60 40 25 15	40 60 75 85	0.87	0.10
Poor protec	tion of str	ream bank	s, strea	am ten	nperatu	re, and	

NC STATE UNIVERSITY	ſ.											
	Dry Pond											
Credit Table												
SCM	Role	% Annual Runoff	% of Trea	ated Runo Fate	ff to Each	EMCefflue	_{int} (mg/L)					
		100% Sized	HSG	ET&I	Effluent	TN	TP					
Dry Pond per MDC	Secondary	84	A B C D	10 5 0 0	90 95 100 100	1.65	0.66					
 Poor protection removal of the second second	tion of str bacteria	ream banks	s, strea	m tem	perature	e, and						
nttps://stormwater.bae.ncsu	.edu/						Bie&A					