A Bayesian Network Model Assessing the Risk to Wastewater Workers of Contracting Ebola Virus Disease During an Outbreak

> Joseph Zabinski Kelsey Pieper Jacqueline MacDonald Gibson

NC Water Resources Research Institute Annual Conference March 15th, 2017

What's Bayesian updating?

What's Bayesian updating?

What's a Bayesian network?

What's a Bayesian network?

BN example: medical diagnostics

2014 Ebola outbreak

Recovered In treatment Died

New York Times, 2014

Risk to wastewater workers?

- need for assessment of risk to wastewater workers
- need to understand risk mitigation options

Conceptual model

Bayesian network model

Highlight 1: hemorrhaging

11

Will the patient experience gastrointestinal hemorrhaging?

Study	Number of Ebola patients	Number with GI hemorrhaging	Probability of GI hemorrhaging	Study weight
1	37	9	24.3%	1.8%
2	464	19	4.1%	22.1%
3	666	6	0.9%	31.8%
4	20	5	25.0%	1.0%
5	23	10	43.5%	1.1%
6	44	1	2.3%	2.1%
7	843	48	6.7%	40.2%

Highlight 1: hemorrhage correction

13

How do we specify worker's exposure point?

Highlight 3: outputs

17

How do we communicate risk results?

Results

- median daily risk (no specifications) : 6.1×10⁻¹²
 (90% CI 1.0×10⁻¹² –5.4×10⁻⁹)
- median daily risk (worst-case scenario): 5.8×10⁻⁴ (90% CI 8.8×10⁻⁷–9.5×10⁻²)
- risk is greatest under ingestion scenarios
- disinfection and dilution have substantial impacts on risk

Decision support

Probability of illness						
<1 in 10^11	0 +					
<1 in 10^10	.002					
<1 in 10^9	.020					
<1 in 10^8	0.18					
<1 in 10^7	1.09]				
<1 in 10^6	4.25					
<1 in 10^5	11.2					
<1 in 10^4	20.4					
<1 in 10^3	23.8					
<1 in 10^2	20.9					
<1 in 10	13.7					
>1 in 10	4.32					
0.0326 ± 0.12						

Disinfo stien weath ad								
Disinfection method								
bleach	0							
quats	0							
paa	100							
none	0							
			•					
			\rightarrow					
Exposu	ure tim	e (min)	→					
Exposu twomin	u re tim	e (min)						
Expos ution twomin fifteenmin	u re tim 0 100	e (min)						
Exposit twomin fifteenmin thirtymin	u re tim 0 100 0	e (min)						

Probability of illness							
<1 in	10^11	.015					
<1 in	10^10	0.13					
<1 in	10^9	1.28	9				
<1 in	10^8	10.3					
<1 in	10^7	31.1					
<1 in	10^6	23.3					
<1 in	10^5	19.2					
<1 in	10^4	11.4					
<1 in	10^3	3.20					
<1 in	10^2	.067					
<1 in	10	0 +					
>1 in	10	0 +					
2.87e-5 ± 0.00019							

BN conclusions

- 23
- Bayesian networks can incorporate many different factors to estimate risk
- can also detect key parameters affecting risk and simulate scenarios and treatment effects
- powerful decision support tool for risk managers

(for more – see *Risk Analysis* manuscript)

Thanks!

- Dr. Jacqueline MacDonald Gibson
- Dr. Kelsey Pieper
- Dr. Emanuele Sozzi
- Dr. Mark Sobsey
- Dr. Jamie Bartram
- Dr. Hannah Sassi & the Gerba research group (Arizona)
- Taylor Rycroft & the Haas research group (Drexel)
- Dr. Lisa Casanova
- Dr. Jade Mitchell
- Jason Waters & the City of Raleigh's Wastewater Treatment Utility
- Lola Olabode & WERF

Water Environment Research Foundation Collaboration. Innovation. Results.

